Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 227–234 | Cite as

Influence of Annealing Treatments on Microstructure and Mechanical Properties of an Extruded Mg AZ31/Al 7050 Laminate

  • Yang Wu
  • Yun-Chang XinEmail author
  • Xiang-Sheng Xia
  • Bo Feng
  • Yan-Bin Wang
  • Zu-De Zhao


Mg AZ31/Al 7050 laminate was fabricated by co-extrusion directly from the as-cast Mg AZ31 and Al 7050 billets. The influence of annealing temperature and annealing time on microstructure and mechanical behavior of the extruded Mg/Al laminate was systematically studied. Results show that annealing treatments at 250 °C for 3 h or at 350 °C for 3 h do not result in an obvious grain coarsening of Mg layer and cannot remove the heterogeneous structure. Annealing does not vary texture in the Mg layer, a large fraction of <0002>//ND and a small fraction of <0002>//TD, but the intensity of component <0002>//ND weakens to some extent. Lamellar microstructure in the Al layer remains after annealing at 250 °C for 3 h or at 350 °C for 3 h. High fractions of the texture components S and cube exist in the extruded sample, and annealing treatment hardly changes their fractions. Post-annealing treatment will largely reduce yield strength of extruded plate and increase plasticity slightly. The yield strength drops from 302 MPa to 206 MPa after annealing at 250 °C for 3 h and to 141 MPa after annealing at 350 °C for 3 h. The elongation to fracture increases from 1.5% to 5.4% after annealing at 250 °C for 3 h and to 4.8% at 350 °C for 3 h. The corresponding mechanism was discussed.


Laminate composite Annealing Microstructure Texture Mechanical property 



This work was supported by the Fundamental Research Funds for the Central Universities (106112016CDJXZ138804) and the “111” Project (B16007) by the Ministry of Education and the State Administration of Foreign Experts Affairs of China.


  1. [1]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  2. [2]
    R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 65, 60 (2015)Google Scholar
  3. [3]
    H.P. Zheng, J.L. Yang, R.Z. Wu, T.Z. Wang, X.D. Ma, L.G. Hou, M.L. Zhang, S. Betsofen, B. Krit, Adv. Eng. Mater. 1792, 18 (2016)Google Scholar
  4. [4]
    T.L. Zhang, T. Tokunaga, M. Ohno, Acta Metall. Sin. (Engl. Lett.) (2018). Google Scholar
  5. [5]
    T. Tokunaga, K. Matsuura, M. Ohno, J. Alloys Compd. 601, 179 (2014)CrossRefGoogle Scholar
  6. [6]
    H.H. Yu, Y.C. Xin, M.Y. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018)CrossRefGoogle Scholar
  7. [7]
    A. Macwan, X.Q. Jiang, C. Li, D.L. Chen, Mater. Sci. Eng. A 587, 344 (2013)CrossRefGoogle Scholar
  8. [8]
    M. Engelhardt, N. Grittner, H.S. Haverkamp, W. Reimche, D. Bormann, F.W. Bach, J. Mater. Process. Technol. 212, 1030 (2012)CrossRefGoogle Scholar
  9. [9]
    Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)CrossRefGoogle Scholar
  10. [10]
    Y.C. Xin, R. Hong, B. Feng, H.H. Yu, Y. Wu, Q. Liu, Mater. Sci. Eng. A 640, 210 (2015)CrossRefGoogle Scholar
  11. [11]
    C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 558, 510 (2012)CrossRefGoogle Scholar
  12. [12]
    H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, Q. Liu, Acta Mater. 128, 313 (2017)CrossRefGoogle Scholar
  13. [13]
    C. Luo, W. Liang, Z. Chen, J. Zhang, C. Chi, F. Yang, Mater. Charact. 84, 34 (2013)CrossRefGoogle Scholar
  14. [14]
    K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, M.Y. Zheng, Mater. Sci. Eng., A 527, 3073 (2010)CrossRefGoogle Scholar
  15. [15]
    H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, H.G. Brokmeier, Scr. Mater. 61, 717 (2009)CrossRefGoogle Scholar
  16. [16]
    X.P. Zhang, T.H. Yang, S. Castagne, J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011)CrossRefGoogle Scholar
  17. [17]
    C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 558, 510 (2012)CrossRefGoogle Scholar
  18. [18]
    B. Feng, Y.C. Xin, F.L. Guo, H.H. Yu, Y. Wu, Q. Liu, Acta Mater. 120, 379 (2016)CrossRefGoogle Scholar
  19. [19]
    Y. Wu, B. Feng, Y.C. Xin, R. Hong, H.H. Yu, Q. Liu, Mater. Sci. Eng. A 640, 454 (2015)CrossRefGoogle Scholar
  20. [20]
    X.B. Liu, R.S. Chen, E.H. Han, J. Mater. Process. Technol. 209, 4675 (2009)CrossRefGoogle Scholar
  21. [21]
    P. He, X. Yue, J.H. Zhang, Mater. Sci. Eng. A 586, 171 (2008)CrossRefGoogle Scholar
  22. [22]
    H. Matsumoto, S. Watanabe, S. Hanada, J. Mater. Process. Technol. 169, 9 (2005)CrossRefGoogle Scholar
  23. [23]
    Y.J. Li, P. Liu, J. Wang, H.J. Ma, Vacuum 82, 15 (2007)CrossRefGoogle Scholar
  24. [24]
    L.M. Zhao, Z.D. Zhang, Scr. Mater. 58, 283 (2008)CrossRefGoogle Scholar
  25. [25]
    M. Paramsothy, M. Gupta, N. Srikanth, J. Compos. Mater. 42, 1297 (2008)CrossRefGoogle Scholar
  26. [26]
    M. Negendank, S. Mueller, W. Reimers, J. Mater. Process. Technol. 212, 1954 (2012)CrossRefGoogle Scholar
  27. [27]
    F. Pérocheau, J.H. Driver, Int. J. Plast 16, 73 (2000)CrossRefGoogle Scholar
  28. [28]
    J.C. Williams, E.A. Starke Jr., Acta Mater. 51, 5775 (2003)CrossRefGoogle Scholar
  29. [29]
    S. Gall, R.S. Coelho, S. Müller, W. Reimers, Mater. Sci. Eng. A 579, 180 (2013)CrossRefGoogle Scholar
  30. [30]
    C. Luo, W. Liang, Z. Chen, J. Zhang, C. Chi, F. Yang, Mater. Charact. 84, 34 (2013)CrossRefGoogle Scholar
  31. [31]
    J. Hirsch, T. Al-Samman, Acta Mater. 61, 818 (2013)CrossRefGoogle Scholar
  32. [32]
    L. Zheng, C. Liu, Y.C. Wan, P.W. Yang, X. Shu, J. Alloys Compd. 509, 8832 (2011)CrossRefGoogle Scholar
  33. [33]
    R. Hawkins, J.C. Wright, Int. J. Mech. Sci. 14, 875 (1972)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Wu
    • 1
  • Yun-Chang Xin
    • 2
    Email author
  • Xiang-Sheng Xia
    • 1
  • Bo Feng
    • 3
  • Yan-Bin Wang
    • 1
  • Zu-De Zhao
    • 1
  1. 1.Southwest Technology and Engineering Research InstituteChongqingChina
  2. 2.International Joint Laboratory for Light Alloys, College of Materials Science and EngineeringChongqing UniversityChongqingChina
  3. 3.Guangdong Institute of Materials and ProcessingGuangdong Academy of SciencesGuangzhouChina

Personalised recommendations