Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 218–226 | Cite as

Corrosion Resistance of AZ91 Mg Alloy Modified by High-Current Pulsed Electron Beam

  • Peng-Peng Wu
  • Kun-Kun DengEmail author
  • Kai-Bo Nie
  • Zhong-Zhong Zhang


The high-current pulsed electron beam (HCPEB) treatment with current density 6 J/cm2 was applied on AZ91 Mg alloy to improve its corrosion resistance. Results showed that the net-like Mg17Al12 disappeared on the surface of AZ91 Mg alloy after irradiation by HCPEB, which was instead of supersaturated Al element on the surface. Nevertheless, the application of HCPEB also led to the formation of crater-like and groove-like structures as well as micro-cracks on the surface of AZ91 Mg alloy. After HCPEB treatment by 3, 5 and 10 pulses, the AZ91 Mg alloy exhibited better corrosion resistance. However, the increasing amount of micro-cracks reduced the anti-corrosive properties of AZ91 Mg alloy as the pulse increased to 20 and 30.


High-current pulsed electron beam (HCPEB) Corrosion resistance Electrochemical impedance spectroscopy (EIS) AZ91 Mg alloy Microstructure 



The authors gratefully acknowledge the finacial support from the National Natural Science Foundation of China (Nos. 51771128 and 51771129), the Projects of International Cooperation in Shanxi (No. 201703D421039) and the Natural Science Foundation of Shanxi (No. 201601D011034). The authors thank Dr. F.J. Xu and Dr. G.Z. Tang for experimental assistance and useful discussions.


  1. [1]
    P. Ji, R.Y. Long, L.C. Hou, R.W. Wu, J.H. Zhang, M.L. Zhang, Surf. Coat. Technol. 350, 428 (2018)CrossRefGoogle Scholar
  2. [2]
    R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 60, 65 (2015)CrossRefGoogle Scholar
  3. [3]
    T.T. Yin, R.Z. Wu, Z. Leng, G. Du, X. Guo, M. Zhang, J. Zhang, Surf. Coat. Technol. 225, 119 (2013)CrossRefGoogle Scholar
  4. [4]
    N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, J. Magn. Alloys 6, 23 (2018)CrossRefGoogle Scholar
  5. [5]
    P. Wu, Z. Zhang, F. Xu, K. Deng, K. Nie, R. Gao, Appl. Surf. Sci. 426, 418 (2017)CrossRefGoogle Scholar
  6. [6]
    J.W. Seong, W.J. Kim, Acta Biomater. 11, 531 (2015)CrossRefGoogle Scholar
  7. [7]
    R.K. Gupta, K. Mensah-Darkwa, D. Kumar, J. Mater. Sci. Technol. 30, 47 (2014)CrossRefGoogle Scholar
  8. [8]
    Y. Zhu, G. Wu, Y.H. Zhang, Q. Zhao, Appl. Surf. Sci. 257, 6129 (2011)CrossRefGoogle Scholar
  9. [9]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  10. [10]
    P. Wu, F. Xu, K. Deng, F. Han, Z. Zhang, R. Gao, Corros. Sci. 127, 280 (2017)CrossRefGoogle Scholar
  11. [11]
    J. Li, Q. Jiang, H. Sun, Y. Li, Corro. Sci. 111, 288 (2016)CrossRefGoogle Scholar
  12. [12]
    L. Hu, Q. Meng, S. Chen, H. Wang, Appl. Surf. Sci. 259, 816 (2012)CrossRefGoogle Scholar
  13. [13]
    N.V. Phuong, K.H. Lee, D. Chang, S. Moon, Corros. Sci. 74, 314 (2013)CrossRefGoogle Scholar
  14. [14]
    L. Xu, E. Zhang, K. Yang, J. Mater. Sci. Mater. Med. 20, 859 (2009)CrossRefGoogle Scholar
  15. [15]
    R. Rojaee, M. Fathi, K. Raeissi, Mater. Sci. Eng. C 33, 3817 (2013)CrossRefGoogle Scholar
  16. [16]
    A. Apelfeld, B. Krit, V. Ludin, N. Morozova, B. Vladimirov, R.Z. Wu, Surf. Coat. Technol. 322, 127 (2017)CrossRefGoogle Scholar
  17. [17]
    J. Zou, T. Grosdidier, K. Zhang, C. Dong, Acta Mater. 54, 5409 (2006)CrossRefGoogle Scholar
  18. [18]
    K. Zhang, J. Ma, J. Zou, Y. Liu, J. Alloys Compd. 707, 178 (2017)CrossRefGoogle Scholar
  19. [19]
    Y.K. Gao, J. Alloys Compd. 572, 180 (2013)CrossRefGoogle Scholar
  20. [20]
    B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, C. Dong, Surf. Coat. Technol. 201, 6297 (2007)CrossRefGoogle Scholar
  21. [21]
    S. Hao, M. Li, Nucl. Instrum. Methods Phys. Res. Sect. B 375, 1 (2016)CrossRefGoogle Scholar
  22. [22]
    M.C. Li, S.Z. Hao, H. Wen, R.F. Huang, Appl. Surf. Sci. 303, 350 (2014)CrossRefGoogle Scholar
  23. [23]
    A.B. Markov, V.P. Rotshtein, Nucl. Instrum. Methods Phys. Res. Sect. B 132, 79 (1997)CrossRefGoogle Scholar
  24. [24]
    G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41, 249 (1998)CrossRefGoogle Scholar
  25. [25]
    J. Liao, M. Hotta, Y. Mori, Mater. Sci. Eng. A 544, 10 (2012)CrossRefGoogle Scholar
  26. [26]
    Z. Shi, A. Atrens, Corros. Sci. 53, 226 (2011)CrossRefGoogle Scholar
  27. [27]
    R. Udhayan, D.P. Bhatt, J. Power Sour. 63, 103 (1996)CrossRefGoogle Scholar
  28. [28]
    G.L. Makar, J. Kruger, J. Electrochem. Soc. 137, 414 (1990)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peng-Peng Wu
    • 1
  • Kun-Kun Deng
    • 1
    Email author
  • Kai-Bo Nie
    • 1
  • Zhong-Zhong Zhang
    • 1
  1. 1.Shanxi Key Laboratory of Advanced Magnesium-Based Materials, College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations