Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 585–598 | Cite as

Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel

  • Zhu Wang
  • Zi-Qiang Zhou
  • Lei ZhangEmail author
  • Jia-Yuan Hu
  • Zi-Ru Zhang
  • Min-Xu Lu


The effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction (OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high pH was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.


Stainless steel pH Polarization XPS Passive films 



This work was supported by the technology projects of State Grid Corporation (No. 52110417000N) and the National Science and Technology Major Project (No. 2016ZX05028-004).


  1. [1]
    Z. Wang, X. Tang, J. Xue, L. Zhang, T. Li, M. Lu, The pitting behavior of stainless steels under SO2 environments with Cl and F, in Proceedings of Corrosion 2017, New Orleans, 7–16 March, 2017Google Scholar
  2. [2]
    A. Singh, K. Stéphenne, Energy Proc. 63, 1678 (2014)CrossRefGoogle Scholar
  3. [3]
    K. Oh, S. Ahn, K. Eom, K. Jung, H. Kwon, Corros. Sci. 79, 34 (2014)CrossRefGoogle Scholar
  4. [4]
    Z. Wang, L. Zhang, X. Tang, Z. Cui, J. Xue, M. Lu, Int. J. Miner. Metall. Mater. 24(8), 943 (2017)CrossRefGoogle Scholar
  5. [5]
    J. Bana, U. Lelek-Borkowska, B. Mazurkiewicz, W. Solarski, Electrochim. Acta 52(18), 5704 (2007)CrossRefGoogle Scholar
  6. [6]
    H. Ge, G. Zhou, W. Wu, Appl. Surf. Sci. 211(1–4), 321 (2003)CrossRefGoogle Scholar
  7. [7]
    D.D. Macdonald, J. Electrochem. Soc. 139(12), 3434 (1992)CrossRefGoogle Scholar
  8. [8]
    Y. Gui, Z.J. Zheng, Y. Gao, Thin Solid Films 599, 64 (2016)CrossRefGoogle Scholar
  9. [9]
    D.G. Li, J.D. Wang, D.R. Chen, Int. J. Hydrog. Energy 39(35), 20105 (2014)CrossRefGoogle Scholar
  10. [10]
    M. Kouril, P. Novak, M. Bojko, Cem. Concr. Res. 40(3), 431 (2010)CrossRefGoogle Scholar
  11. [11]
    S. Fajardo, D.M. Bastidas, M.P. Ryan, M. Criado, D.S. McPhail, J.M. Bastidas, Appl. Surf. Sci. 256(21), 6139 (2010)CrossRefGoogle Scholar
  12. [12]
    S.M. Alvarez, A. Bautista, F. Velasco, Corros. Sci. 53(5), 1748 (2011)CrossRefGoogle Scholar
  13. [13]
    H. Luo, C.F. Dong, X.G. Li, K. Xiao, Electrochim. Acta 64, 211 (2012)CrossRefGoogle Scholar
  14. [14]
    L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55(21SI), 6174 (2010)CrossRefGoogle Scholar
  15. [15]
    L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 56(14), 5280 (2011)CrossRefGoogle Scholar
  16. [16]
    Z. Wang, L. Zhang, X. Tang, Z. Zhang, M. Lu, Appl. Surf. Sci. 423, 457 (2017)CrossRefGoogle Scholar
  17. [17]
    Y. Li, Y.F. Cheng, Appl. Surf. Sci. 396, 144 (2017)CrossRefGoogle Scholar
  18. [18]
    W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edstrom, Appl. Surf. Sci. 258(15), 5790 (2012)CrossRefGoogle Scholar
  19. [19]
    B.T. Lu, J.L. Luo, Y.C. Lu, Electrochim. Acta 87, 824 (2013)CrossRefGoogle Scholar
  20. [20]
    S. Refaey, F. Taha, A. El-Malak, Appl. Surf. Sci. 242(1–2), 114 (2005)CrossRefGoogle Scholar
  21. [21]
    A.U. Malik, P.C. Mayan Kutty, N.A. Siddiqi, I.N. Andijani, S. Ahmed, Corros. Sci. 33(11), 1809 (1992)CrossRefGoogle Scholar
  22. [22]
    W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Nano Energy 43, 110 (2018)CrossRefGoogle Scholar
  23. [23]
    N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Edit. 54(21), 6251 (2015)CrossRefGoogle Scholar
  24. [24]
    J. Liu, T. Zhang, G. Meng, Y. Shao, F. Wang, Corros. Sci. 91, 232 (2015)CrossRefGoogle Scholar
  25. [25]
    J. Liu, T. Zhang, H. Li, Y. Zhao, F. Wang, X. Zhang, L. Cheng, K. Wu, J. Electrochem. Soc. 165(7), C328 (2018)CrossRefGoogle Scholar
  26. [26]
    E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukuda, S. Ishikawa, T. Ujiro, Corros. Sci. 52(12), 3851 (2010)CrossRefGoogle Scholar
  27. [27]
    L. Freire, M.A. Catarino, M.I. Godinho, M.J. Ferreira, M.G.S. Ferreira, A.M.P. Simoes, M.F. Montemor, Cem. Concr. Compos. 34(9), 1075 (2012)CrossRefGoogle Scholar
  28. [28]
    M.F. Montemor, A.M.P. Simoes, M.G.S. Ferreira, M. Da Cunha Belo, Corros. Sci. 41(1), 17 (1999)CrossRefGoogle Scholar
  29. [29]
    J.E. Castle, J.H. Qiu, Corros. Sci. 29(5), 591 (1989)CrossRefGoogle Scholar
  30. [30]
    T. Oshima, Y. Habara, K. Kuroda, ISIJ Int. 47(3), 359 (2007)CrossRefGoogle Scholar
  31. [31]
    H. Luo, C. Dong, K. Xiao, X. Li, RSC Adv. 6(12), 9940 (2016)CrossRefGoogle Scholar
  32. [32]
    Z.H. Jiang, J.P. Han, Y. Li, Mater. Res. Innov. 18(Suppl 5), S5 (2014)Google Scholar
  33. [33]
    T.J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, R.P. Nogueira, Mater. Chem. Phys. 126(3), 602 (2011)CrossRefGoogle Scholar
  34. [34]
    I. Betova, M. Bojinov, O. Hyoekyvirta, T. Saario, Corros. Sci. 52(4), 1499 (2010)CrossRefGoogle Scholar
  35. [35]
    C. Zhang, Z. Zhang, L. Liu, Electrochim. Acta 210, 401 (2016)CrossRefGoogle Scholar
  36. [36]
    B. Zhang, S. Hao, J. Wu, X. Li, C. Li, X. Di, Y. Huang, Mater. Charact. 131, 168 (2017)CrossRefGoogle Scholar
  37. [37]
    X. Zhang, J. Zhao, T. Xi, M.B. Shahzad, C. Yang, K. Yang, J. Mater. Sci. Tehcnol. 34, 2149 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhu Wang
    • 1
  • Zi-Qiang Zhou
    • 2
  • Lei Zhang
    • 1
    Email author
  • Jia-Yuan Hu
    • 2
  • Zi-Ru Zhang
    • 1
  • Min-Xu Lu
    • 1
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.State Grid Zhejiang Electric Power Research InstituteHangzhouChina

Personalised recommendations