Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 629–637 | Cite as

Comparative Study on Solid-State and Metastable Liquid-State Aging for SAC305/Cu Joints

  • Shuang Li
  • Xiao-Wu HuEmail author
  • Wei-Guo Zhang
  • Yu-Long Li
  • Xiong-Xin Jiang


In order to study the influence of the physical state of solder on the interfacial reaction of dip-soldered Sn–3.0Ag–0.5Cu/Cu system, two kinds of experiments were designed, including: (1) solid-state aging between the solder and Cu substrate; (2) liquid-state aging between the metastable supercooled liquid-state solder and Cu substrate. The aging times were 30, 60, 120 and 180 min, respectively, and the aging temperature was 8 °C lower than the melting point of the Sn–3.0Ag–0.5Cu (SAC305) alloy (217 °C). The experimental data revealed that the physical state of the solder obviously affected the formation of the intermetallic compound (IMC), and resulted in the difference in the diffusion of atoms on the interface between the SAC305 solder and Cu substrate. The IMC interface after aging for 30 min presents unique characteristics compared with that of the sample after dip soldering. The IMC interface of solid-state aged SAC305/Cu couple is relatively planar, while the IMC interface under metastable supercooled liquid-state aging conditions presents scallop-like shape.


Lead-free solder Supercooling Metastable liquid state Aging Intermetallic compound 



This work was supported financially by the National Natural Science Foundation of China (Nos. 51465039, 51665038 and 51765040) and the Natural Science Foundation of Jiangxi Province (No. 20161BAB206122), the Nature Science Basic Research Plan in Shaanxi Province of China (No. 2016JM5085).


  1. [1]
    C.Y. Lin, C.C. Jao, C. Lee, Y.W. Yen, J. Alloys Compd. 440, 333 (2007)CrossRefGoogle Scholar
  2. [2]
    L. Zhang, L.L. Gao, J. Alloys Compd. 635, 55 (2015)CrossRefGoogle Scholar
  3. [3]
    C.W. Huang, K.L. Lin, Mater. Trans. JIM 45, 588 (2004)CrossRefGoogle Scholar
  4. [4]
    X.W. Hu, T. Xu, K. Li, Y.L. Li, X.X. Jiang, J. Alloys Compd. 690, 720 (2017)CrossRefGoogle Scholar
  5. [5]
    O.M. Abdelhadi, L.L. Ladani, J. Alloys Compd. 537, 87 (2012)CrossRefGoogle Scholar
  6. [6]
    H.B. Qin, X.P. Zhang, X.B. Zhou, J.B. Zeng, Y.W. Mai, Mater. Sci. Eng. A 617, 14 (2014)CrossRefGoogle Scholar
  7. [7]
    W.Q. Peng, E. Monlevade, M.E. Marques, Microelectron. Reliab. 47, 2161 (2007)CrossRefGoogle Scholar
  8. [8]
    X.J. Wang, Y.L. Wang, F.J. Wang, N. Liu, J.X. Wang, Acta Metall. 27, 1159 (2014)CrossRefGoogle Scholar
  9. [9]
    A.M. Gusak, K.N. Tu, Phys. Rev. B 66, 115403 (2002)CrossRefGoogle Scholar
  10. [10]
    X.X. Tu, D.Q. Yi, J. Wu, B. Wang, J Alloys Compd. 698, 317 (2017)CrossRefGoogle Scholar
  11. [11]
    Q.S. Zhu, Z.F. Zhang, J.K. Shang, Z.G. Wang, Mater. Sci. Eng. A 435–436, 588 (2006)CrossRefGoogle Scholar
  12. [12]
    D.Z. Li, C.Q. Liu, P.P. Conway, J. Electron. Mater. 35, 388 (2006)CrossRefGoogle Scholar
  13. [13]
    J. Shen, M.L. Zhao, P.P. He, Y.Y. Pu, J. Alloys Compd. 574, 451 (2013)CrossRefGoogle Scholar
  14. [14]
    H.L. Li, R. An, C.Q. Wang, Z. Jiang, J. Alloys Compd. 634, 94 (2015)CrossRefGoogle Scholar
  15. [15]
    X.O. Zhu, L. Zhao, S. Tian, Y. Zhou, Electron. Compon. Mater. 35, 67 (2016)Google Scholar
  16. [16]
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, H. Ipser, J. Electron. Mater. 19, 383 (2008)CrossRefGoogle Scholar
  17. [17]
    O.Y. Liashenko, F. Hodaj, Acta Mater. 99, 106 (2015)CrossRefGoogle Scholar
  18. [18]
    S.W. Chen, Y.W. Yen, J. Electron. Mater. 28, 1203 (1999)CrossRefGoogle Scholar
  19. [19]
    J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater. 56, 1075 (2008)CrossRefGoogle Scholar
  20. [20]
    P.T. Vianco, J.A. Rejent, J. Electron. Mater. 33, 991 (2004)CrossRefGoogle Scholar
  21. [21]
    X.Y. Li, F.H. Li, F. Guo, Y.W. Yao, J. Electron. Mater. 40, 51 (2011)CrossRefGoogle Scholar
  22. [22]
    H.K. Kim, K.N. Tu, Phys. Rev. B 53, 593 (1996)Google Scholar
  23. [23]
    Ming Yang, Mingyu Li, Jongmyung Kim, Intermetallics 31, 177 (2012)CrossRefGoogle Scholar
  24. [24]
    Y. Tang, G.Y. Li, Y.C. Pan, J. Alloys Compd. 554, 195 (2013)CrossRefGoogle Scholar
  25. [25]
    H.F. Zou, H.J. Yang, Z.F. Zhang, Mater. Chem. Phys. 131, 190 (2011)CrossRefGoogle Scholar
  26. [26]
    A.M. Gusak, K.N. Tu, Phys. Rev. B 66, 115403 (2002)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuang Li
    • 1
  • Xiao-Wu Hu
    • 1
    Email author
  • Wei-Guo Zhang
    • 2
  • Yu-Long Li
    • 1
  • Xiong-Xin Jiang
    • 1
  1. 1.Key Lab for Robot and Welding Automation of Jiangxi Province, Mechanical and Electrical Engineering SchoolNanchang UniversityNanchangChina
  2. 2.College of Mechanical and Electronic EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations