Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 107–115 | Cite as

Effect of Prior Cold Deformation on the Stability of Retained Austenite in GCr15 Bearing Steel

  • Feng Wang
  • Dong-Sheng Qian
  • Xiao-Hui Lu
Article
  • 184 Downloads

Abstract

In this work, the effect of prior cold deformation on the stability of retained austenite in GCr15 bearing steel was investigated after quenching and tempering treatment. The thermal stability was evaluated by calculating thermal activation energy for decomposition of retained austenite using differential scanning calorimeter. The mechanical stability was investigated according to the strain-induced martensitic transformation behavior of retained austenite under the standard compression testing. It is found that the prior cold deformation not only accelerates the carbide dissolution during the austenitization process but also contributes to the carbon partitioning in the tempering stage due to the higher density of phase boundaries, which results in the improvement of the thermal stability of retained austenite. Due to the enhanced carbide dissolution, the higher carbon content in the prior austenite will intensify the isotropic strain of martensitic transformation. As a consequence, the film-like retained austenite is likely to form under a higher hydrostatic pressure and thus shows a higher mechanical stability. Additionally, it is noteworthy that the benefits of the prior cold deformation to the stability of retained austenite would be saturated when the cold deformation degree is larger than 40%.

Keywords

GCr15 bearing steel Prior cold deformation Retained austenite stability 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51575414 and 51605354), the 111 Project (B17034), the China Postdoctoral Science Foundation (No. 2017M612524) and the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2019-017).

References

  1. [1]
    L. Hua, J.D. Deng, D.S. Qian, J. Mater. Process. Technol. 54, 65 (2017)Google Scholar
  2. [2]
    J. Beswick, Metall. Trans. A 15, 299 (1984)CrossRefGoogle Scholar
  3. [3]
    Z.X. Li, C.S. Li, J.Y. Ren, B.Z. Li, J. Zhang, Mater. Sci. Eng., A 674, 262 (2016)CrossRefGoogle Scholar
  4. [4]
    K. Ryttberg, W.M. Knutson, V. Recina, Mater. Sci. Eng., A 527, 243 (2010)CrossRefGoogle Scholar
  5. [5]
    H.K.D.H. Bhadeshia, Prog. Mater Sci. 57, 268 (2012)CrossRefGoogle Scholar
  6. [6]
    S.J. Lee, Y.K. Lee, Mater. Sci. Forum 475, 3169 (2005)CrossRefGoogle Scholar
  7. [7]
    X.H. Lu, W. Li, C.L. Wang, H.S. Zhao, X.J. Jin, Acta Metall. Sin. (Engl. Lett.) 28, 1 (2015)CrossRefGoogle Scholar
  8. [8]
    Y. Zhang, L. Wang, K.O. Findley, J.G. Speer, Metall. Mater. Trans. A 48, 1 (2017)Google Scholar
  9. [9]
    E.V. Pereloma, A.A. Gazder, I.B. Timokhina, Mater. Sci. Forum 738, 212 (2013)CrossRefGoogle Scholar
  10. [10]
    E. Jimenez-Melero, R. Blondé, M.Y. Sherif, V. Honkimäki, Acta Mater. 61, 1154 (2013)CrossRefGoogle Scholar
  11. [11]
    C. Sidoroff, M. Perez, P. Dierickx, D. Girodin, Advances in Steel Technologies for Rolling Bearings, vol. 10 (ASTM International, Pennsyivania, 2015), p. 14Google Scholar
  12. [12]
    X. Qiao, L. Han, W. Zhang, J. Gu, ISIJ Int. 56, 140 (2016)CrossRefGoogle Scholar
  13. [13]
    Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 51, 507 (2003)CrossRefGoogle Scholar
  14. [14]
    C. Wang, H. Ding, Z.Y. Tang, J. Zhang, Ironmak. Steelmak. 42, 9 (2015)CrossRefGoogle Scholar
  15. [15]
    K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Metall. Trans. A 23, 3085 (1992)CrossRefGoogle Scholar
  16. [16]
    M. Preciado, M. Pellizzari, J. Mater. Sci. 49, 8183 (2014)CrossRefGoogle Scholar
  17. [17]
    K.I. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, ISIJ Int. 40, 902 (2000)CrossRefGoogle Scholar
  18. [18]
    G.R. Speich, A. Szirmae, Trans. TMS-AIME 245, 1063 (1969)Google Scholar
  19. [19]
    J.H. Kang, P.E.J. Rivera-Díaz-Del-Castillo, Comput. Mater. Sci. 67, 364 (2013)CrossRefGoogle Scholar
  20. [20]
    T. Sourmail, V. Smanio, Acta Mater. 61, 2639 (2013)CrossRefGoogle Scholar
  21. [21]
    J. Park, J.H. Shim, S.J. Lee, Metall. Mater. Trans. A 49, 450 (2018)CrossRefGoogle Scholar
  22. [22]
    L. Kaufman, M. Cohen, Prog. Met. Phys. 7, 165 (1958)CrossRefGoogle Scholar
  23. [23]
    W. Zhang, Y.M. Jin, A.G. Khachaturyan, Acta Mater. 55, 565 (2007)CrossRefGoogle Scholar
  24. [24]
    S. Matas, R.F. Hehemann, Nature 187, 685 (1960)CrossRefGoogle Scholar
  25. [25]
    C. Wang, H. Ding, Z. Tang, J. Zhang, H. Di, Steel Res. Int. 85, 388 (2014)CrossRefGoogle Scholar
  26. [26]
    M.J. Whiting, Scr. Mater. 43, 969 (2000)CrossRefGoogle Scholar
  27. [27]
    D.D. Knijf, E.P.D. Silva, C. Föjer, R. Petrov, Mater. Sci. Technol. 31, 817 (2014)CrossRefGoogle Scholar
  28. [28]
    K.I. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, ISIJ Int. 33, 775 (1993)CrossRefGoogle Scholar
  29. [29]
    R.D.K. Misra, B.R. Kumar, M. Somani, P. Karjalainen, Scr. Mater. 59, 79 (2008)CrossRefGoogle Scholar
  30. [30]
    Appl Talonen, Surf. Sci. 123, 339 (2007)Google Scholar
  31. [31]
    H. Luo, Scr. Mater. 66, 832 (2012)CrossRefGoogle Scholar
  32. [32]
    A. Molkeri, F. Pahlevani, I. Emmanuelawati, V. Sahajwalla, Mater. Lett. 163, 209 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Advanced Technology for Automotive ComponentsWuhanChina
  3. 3.School of Automotive EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations