Advertisement

Effect of Cr Doping on the Surface Characteristics of Ni Metal Studied with First-Principles Calculation

  • Xian-Feng Sun
  • Hai-Tao Wang
  • En-Hou Han
Article
  • 30 Downloads

Abstract

The influence of Cr doping on the surface characteristics of Ni metal, including the surface energy, work function, adsorption and dissociation, has been investigated by means of first-principles calculation based on density functional theory. The results reveal that with the increase in Cr doping amount, the surface energies for all (111), (110) and (100) surfaces increase, whereas the work functions of (111) and (100) surfaces decrease followed by an increase and that of (110) surface has been decreasing. On the typical Ni(111) and Ni–Cr(111) surfaces, the adsorption energies follow the sequence O > OH > H > H2O, and the doping of Cr increases the chemical activity of surfaces leading to the improvement of adsorption energies. The H2O dissociating to OH and H is easier than the subsequent OH dissociating to O and H. The addition of Cr into Ni surface decreases the energy barriers and significantly increases the reaction rate constants.

Keywords

Density functional theory Surface characteristics Nickel Cr addition Atomistic simulation 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702100) in the Proof.

References

  1. [1]
    L.A.S. Ries, M. Da Cunha Belo, M.G.S. Ferreira, I.L. Muller, Corros. Sci. 50, 676 (2008)CrossRefGoogle Scholar
  2. [2]
    F. Huang, J.Q. Wang, E.-H. Han, W. Ke, J. Mater. Sci. Technol. 28, 562 (2012)CrossRefGoogle Scholar
  3. [3]
    X. Ru, Z. Lu, J. Chen, G. Han, J. Zhang, P. Hu, X. Liang, J. Nucl. Mater. 497, 37 (2017)CrossRefGoogle Scholar
  4. [4]
    R. Mendonca, R.W. Bosch, W.V. Renterghem, M. Vankeerberghen, C. deAraújo Figueiredo, J. Nucl. Mater. 477, 280 (2016)CrossRefGoogle Scholar
  5. [5]
    Z.M. Zhang, J.Q. Wang, E.-H. Han, W. Ke, J. Mater. Sci. Technol. 28, 785 (2012)CrossRefGoogle Scholar
  6. [6]
    W. Kuang, G.S. Was, C. Miller, M. Kaufman, T. Alam, B. Gwalani, R. Banerjee, Corros. Sci. 130, 126 (2018)CrossRefGoogle Scholar
  7. [7]
    P.T. Brewick, N. Kota, A.C. Lewis, V.G. DeGiorgi, A.B. Geltmacher, S.M. Oidwai, Corros. Sci. 129, 54 (2017)CrossRefGoogle Scholar
  8. [8]
    H.W. Hugosson, O. Eriksson, U. Jansson, A.V. Ruban, P. Souvatzis, I.A. Abrikosov, Surf. Sci. 557, 243 (2004)CrossRefGoogle Scholar
  9. [9]
    K.F. Wojciechowski, Surf. Sci. 437, 285 (1999)CrossRefGoogle Scholar
  10. [10]
    G. Wang, S.Q. Wang, Surf. Sci. 630, 216 (2014)CrossRefGoogle Scholar
  11. [11]
    B. Fu, W. Liu, Z. Li, Appl. Surf. Sci. 256, 6899 (2010)CrossRefGoogle Scholar
  12. [12]
    D.P. Ji, Q. Zhu, S.Q. Wang, Surf. Sci. 651, 137 (2016)CrossRefGoogle Scholar
  13. [13]
    G.G. Xu, Q.Y. Wu, J.M. Zhang, Z.G. Chen, Z.G. Huang, Acta Phys. Sin. 58, 1924 (2009)Google Scholar
  14. [14]
    N.K. Das, T. Shoji, Appl. Surf. Sci. 258, 442 (2011)CrossRefGoogle Scholar
  15. [15]
    M. Pozzo, G. Carlini, R. Rosei, D. Alfè, J. Chem. Phys. 126, 164706 (2007)CrossRefGoogle Scholar
  16. [16]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  17. [17]
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  18. [18]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  19. [19]
    G. Xiao, C. Long, H. Chen, X. Tian, T. Wei, Y. Zhao, W. Gao, Appl. Surf. Sci. 351, 517 (2015)CrossRefGoogle Scholar
  20. [20]
    X.J. Shao, D.T. Li, J.Q. Cai, H.J. Luo, C.K. Dong, Appl. Surf. Sci. 368, 477 (2016)CrossRefGoogle Scholar
  21. [21]
    A. Mohsenzadeh, T. Richards, K. Bolton, Surf. Sci. 644, 53 (2016)CrossRefGoogle Scholar
  22. [22]
    L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, Surf. Sci. 411, 186 (1998)CrossRefGoogle Scholar
  23. [23]
    K.H. Zhong, G.G. Xu, Y.M. Cheng, K.Q. Tang, Z.G. Chen, Z.G. Huang, Int. J. Mod. Phys. B 28, 1450161 (2014)CrossRefGoogle Scholar
  24. [24]
    G. Xu, Q. Wu, Z. Chen, Z. Huang, Y.P. Feng, J. Appl. Phys. 106, 043708 (2009)CrossRefGoogle Scholar
  25. [25]
    N.R. Norton, R.L. Tapping, J.W. Goodale, Surf. Sci. 65, 13 (1977)CrossRefGoogle Scholar
  26. [26]
    N. Cherbal, E.H. Megchiche, H. Zenia, K. Lounis, M. Amarouche, Surf. Sci. 663, 62 (2017)CrossRefGoogle Scholar
  27. [27]
    N.K. Das, T. Shoji, Corros. Sci. 73, 18 (2013)CrossRefGoogle Scholar
  28. [28]
    W. Wang, G. Wang, J. Energy Inst. 88, 112 (2015)CrossRefGoogle Scholar
  29. [29]
    A. Michaelides, P. Hu, J. Chem. Phys. 114, 513 (2000)CrossRefGoogle Scholar
  30. [30]
    H. Yang, J.L. Whitten, Surf. Sci. 370, 136 (1997)CrossRefGoogle Scholar
  31. [31]
    G. Kresse, J. Hafner, Surf. Sci. 459, 287 (2000)CrossRefGoogle Scholar
  32. [32]
    S. Lzvekov, G.A. Voth, J. Chem. Phys. 115, 7196 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations