Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu–30Zn Joints

Article
  • 11 Downloads

Abstract

Ultra-strong joints of pure Cu and Cu–30Zn alloy were obtained by friction stir welding under flowing water. The effects of heat inputting condition and material characteristics on the morphologies, microstructures and mechanical properties of welding joints were studied. Defect-free stirring zones of pure Cu and Cu–30Zn were characterized by onion-ringed structure and plastic flowing bands, respectively. Both low stacking fault energy and fast cooling condition contributed to the formation of small recrystallized grains less than 1 μm in stirring zones. The welding joints in both materials exhibited enhanced mechanical performances due to ultrafine-grained microstructure in stirring zones and disappearance of soft heat-affected-zone. The technique of digital image correlation was used to study the tensile deformation behaviors of welding joints and verify the improved tensile properties.

Keywords

Friction stir welding Ultrafine grain Mechanical properties Stacking fault energy Digital image correlation (DIC) 

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 11672195 and 51301092) and Sichuan Youth Science and Technology Foundation (No. 2016JQ0047).

References

  1. [1]
    X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu, G. Yang, Mater. Lett. 64, 524 (2010)CrossRefGoogle Scholar
  2. [2]
    R.M. Leal, I. Galvão, A. Loureiro, D.M. Rodrigues, Int. J. Adv. Manuf. Technol. 80, 1655 (2015)CrossRefGoogle Scholar
  3. [3]
    H. Farrokhi, A. Heidarzadeh, T. Saeid, Sci. Technol. Weld. Join. 18, 697 (2013)CrossRefGoogle Scholar
  4. [4]
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes. International Patent Application, No. PCT/GB92/02203 (1991)Google Scholar
  5. [5]
    R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)CrossRefGoogle Scholar
  6. [6]
    S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil, T.W. Liao, Acta Metall. Sin. (Engl. Lett.) 29, 869 (2016)CrossRefGoogle Scholar
  7. [7]
    R.V. Barenji, Trans. Indian Inst. Met. 69, 1077 (2016)CrossRefGoogle Scholar
  8. [8]
    Y.F. Sun, N. Xu, H. Fujii, Mater. Sci. Eng. A 589, 228 (2014)CrossRefGoogle Scholar
  9. [9]
    K.N. Krishnan, Mater. Sci. Eng. A 327, 246 (2002)CrossRefGoogle Scholar
  10. [10]
    N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Mater. Sci. Eng. A 528, 5883 (2011)CrossRefGoogle Scholar
  11. [11]
    D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 27, 816 (2014)CrossRefGoogle Scholar
  12. [12]
    L. Commin, M. Dumont, J.E. Masse, L. Barrallier, Acta Mater. 57, 326 (2009)CrossRefGoogle Scholar
  13. [13]
    C.I. Chang, C.J. Lee, J.C. Huang, Scr. Mater. 51, 509 (2004)CrossRefGoogle Scholar
  14. [14]
    T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Scr. Mater. 64, 355 (2011)CrossRefGoogle Scholar
  15. [15]
    P. Xue, B.L. Xiao, Z.Y. Ma, Mater. Des. 56, 848 (2014)CrossRefGoogle Scholar
  16. [16]
    Y.F. Sun, H. Fujii, Mater. Sci. Eng. A 527, 6879 (2010)CrossRefGoogle Scholar
  17. [17]
    P. Xue, B.L. Xiao, Z.Y. Ma, Sci. Eng. A 532, 106 (2012)CrossRefGoogle Scholar
  18. [18]
    A. Heidarzadeh, T. Saeid, Rare Met. (2016).  https://doi.org/10.1007/s12598-016-0704-9 Google Scholar
  19. [19]
    P. Xue, B.L. Xiao, Z.Y. Ma, Scr. Mater. 68, 751 (2013)CrossRefGoogle Scholar
  20. [20]
    A. Azizi, R.V. Barenji, A.V. Barenji, M. Hashemipour, Int. J. Adv. Manuf. Technol. 86, 1985 (2016)CrossRefGoogle Scholar
  21. [21]
    P. Xue, B.L. Xiao, Q. Zhang, Z.Y. Ma, Scr. Mater. 64, 1051 (2011)CrossRefGoogle Scholar
  22. [22]
    N. Xu, R. Ueji, Y. Morisada, H. Fujii, Mater. Des. 56, 20 (2014)CrossRefGoogle Scholar
  23. [23]
    S. Emami, T. Saeid, Acta Metall. Sin. (Engl. Lett.) 28, 766 (2015)CrossRefGoogle Scholar
  24. [24]
    N. Xu, R. Ueji, H. Fujii, Mater. Sci. Eng. A 610, 132 (2014)CrossRefGoogle Scholar
  25. [25]
    G.M. Xie, Z.Y. Ma, L. Geng, Scr. Mater. 57, 73 (2007)CrossRefGoogle Scholar
  26. [26]
    H. Pashazadeh, J. Teimournezhad, A. Masoumi, Int. J. Adv. Manuf. Technol. 88, 1961 (2017)CrossRefGoogle Scholar
  27. [27]
    A.P. Reynolds, Sci. Technol. Weld. Join. 5, 120 (2000)CrossRefGoogle Scholar
  28. [28]
    S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa, Philos. Mag. 95, 367 (2015)CrossRefGoogle Scholar
  29. [29]
    Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang, Mater. Sci. Eng. A 528, 4259 (2011)CrossRefGoogle Scholar
  30. [30]
    T. Sakaia, A. Belyakovb, R. Kaibyshevb, H. Miuraa, J.J. Jonas, Prog. Mater Sci. 60, 130 (2014)CrossRefGoogle Scholar
  31. [31]
    K.V. Jata, S.L. Semiatin, Scr. Mater. 43, 743 (2000)CrossRefGoogle Scholar
  32. [32]
    A. Heidarzadeh, T. Saeid, V. Klemm, Mater. Charact. 119, 84 (2016)CrossRefGoogle Scholar
  33. [33]
    F.A. Mohamed, Acta Mater. 51, 4107 (2003)CrossRefGoogle Scholar
  34. [34]
    M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater Sci. 51, 427 (2006)CrossRefGoogle Scholar
  35. [35]
    C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, Y.T. Zhu, Mater. Res. Lett. 3, 88 (2015)CrossRefGoogle Scholar
  36. [36]
    P. Xue, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 29, 1111 (2013)CrossRefGoogle Scholar
  37. [37]
    K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)CrossRefGoogle Scholar
  38. [38]
    B. Dang, X. Zhang, Y.Z. Chen, C.X. Chen, H.T. Wang, F. Liu, Sci. Rep. 6, 30874 (2016)CrossRefGoogle Scholar
  39. [39]
    Y.Z. Chen, X.Y. Ma, X.H. Shi, T. Suo, C. Borchers, K.H. Zhang, F. Liu, R. Kirchheim, Scr. Mater. 98, 48 (2015)CrossRefGoogle Scholar
  40. [40]
    Y.Z. Chen, H.P. Barth, M. Deutges, C. Borchers, F. Liu, R. Kirchheim, Scr. Mater. 68, 743 (2013)CrossRefGoogle Scholar
  41. [41]
    X.L. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. 111, 7197 (2014)CrossRefGoogle Scholar
  42. [42]
    H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solid 47, 1239 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsSichuan UniversityChengduChina
  2. 2.Nano Structural Materials Center, School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations