Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 1, pp 71–81 | Cite as

Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31

  • Zhao-Yang JinEmail author
  • Nan-Nan Li
  • Kai Yan
  • Jian Wang
  • Jing Bai
  • Hongbiao Dong


Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy were calculated to characterize the deformation mechanism. Then, the effects of hot deformation parameters on deformation mechanism, microstructure evolution and hot workability of AZ31 alloy were discussed. With increasing deformation temperature, the operation of non-basal slip systems and full development of dynamic recrystallization (DRX) contribute to effective improvement in hot workability of AZ31 alloy. The influences of strain rate and strain are complex. When temperature exceeds 350 °C, the deformation mechanism is slightly dependent of the strain rate or strain. The dominant mechanism is dislocation cross-slip, which favors DRX nucleation and grain growth and thus leads to good plasticity. At low temperature (below 350 °C), the deformation mechanism is sensitive to strain and strain rate. Both the dominant deformation mechanism and inadequate development of DRX deteriorate the ductility of AZ31 alloy. The flow instability mainly occurs in the vicinity of 250 °C and 1 s−1.


Hot workability Deformation mechanism Dynamic recrystallization Activation energy Magnesium alloy 



This work was supported financially by the National Key Research and Development Program of China (No. 2016YFC1102402), the National Natural Science Foundation of China (No. 31570961) and the Natural Science Foundation of Jiangsu Province (No. BK20160968).


  1. [1]
    K. Liu, X.H. Dong, H.Y. Xie, F. Peng, Mater. Sci. Eng., A 623, 97 (2015)CrossRefGoogle Scholar
  2. [2]
    S. Housh, B. Mikucki, A. Stevenson, Selection and application of magnesium and magnesium alloys, 10th edn. (ASM International, Materials Park, OH, 1990), p. 455Google Scholar
  3. [3]
    W.L. Cheng, Q.W. Tian, H. Yu, B.S. You, H.X. Wang, Mater. Des. 85, 762 (2015)CrossRefGoogle Scholar
  4. [4]
    W.L. Cheng, Z.P. Que, J.S. Zhang, C.X. Xu, W. Liang, B.S. You, S.S. Park, Int. J. Miner. Metall. Mater. 20, 49 (2013)CrossRefGoogle Scholar
  5. [5]
    K.R. Athul, U.T.S. Pillai, A. Srinivasan, B.C. Pai, Adv. Eng. Mater. 18, 770 (2016)CrossRefGoogle Scholar
  6. [6]
    P. Zhou, Q.X. Ma, Acta Metall. Sin. (Engl. Lett.) 30, 907 (2017)CrossRefGoogle Scholar
  7. [7]
    J. Han, J.P. Sun, Y. Han, H. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 1080 (2017)CrossRefGoogle Scholar
  8. [8]
    G.Z. Quan, H.R. Wen, J. Pan, Z.Y. Zou, Int. J. Precis. Eng. Manuf. 17, 171 (2016)CrossRefGoogle Scholar
  9. [9]
    Y.Y. Dong, C.S. Zhang, G.Q. Zhao, Y.J. Guan, A.J. Gao, W.C. Sun, Mater. Des. 92, 983 (2016)CrossRefGoogle Scholar
  10. [10]
    Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29, 422 (2016)CrossRefGoogle Scholar
  11. [11]
    C. Poletti, H. Dieringa, F. Warchomicka, Mater. Sci. Eng., A 516, 138 (2009)CrossRefGoogle Scholar
  12. [12]
    Y.V.R.K. Prasad, K.P. Rao, Mater. Des. 30, 3723 (2009)CrossRefGoogle Scholar
  13. [13]
    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng., A 487, 316 (2008)CrossRefGoogle Scholar
  14. [14]
    N. Srinivasan, Y.V.R.K. Prasad, P.R. Rao, Mater. Sci. Eng., A 476(1–2), 146 (2008)CrossRefGoogle Scholar
  15. [15]
    W.P. Peng, P.J. Li, P. Zeng, L.P. Lei, Mater. Sci. Eng., A 494(1–2), 173 (2008)CrossRefGoogle Scholar
  16. [16]
    Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Vacuum 137, 104 (2017)CrossRefGoogle Scholar
  17. [17]
    G.A. He, L.M. Tan, F. Liu, L. Huang, Z.W. Huang, L. Jiang, Materials 10, 161 (2017)CrossRefGoogle Scholar
  18. [18]
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984)CrossRefGoogle Scholar
  19. [19]
    Z.Y. Jin, N.N. Li, K. Yan, J.X. Chen, D.L. Wei, Z.S. Cui, Acta Metall. Sin. (Engl. Lett.) (2017). Google Scholar
  20. [20]
    P. Dadras, J.F. Thomas, Metall. Trans. A 12, 1867 (1981)CrossRefGoogle Scholar
  21. [21]
    S.V.S.N. Murty, M.S. Sarma, B.N. Rao, Metall. Mater. Trans. A 28, 1581 (1997)CrossRefGoogle Scholar
  22. [22]
    S.V.S.N. Murty, B.N. Rao, B.P. Kashyap, Mater. Process. Technol. 166, 279 (2005)CrossRefGoogle Scholar
  23. [23]
    Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot working guide: a compendium of processing maps, 2nd edn. (ASM International, Materials Park, OH, 2015), p. 13Google Scholar
  24. [24]
    C.M. Sellars, W.J.M. Tegart, Int. Metall. Rev. 17, 1 (1972)Google Scholar
  25. [25]
    D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, X.M. Chen, J. Alloys Compd. 649, 1075 (2015)CrossRefGoogle Scholar
  26. [26]
    Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. (Engl. Lett.) 29, 441 (2016)CrossRefGoogle Scholar
  27. [27]
    H.J. Frost, M.F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics (Pergamon Press, Oxford, 1982), p. 44Google Scholar
  28. [28]
    R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng., A 395, 338 (2005)CrossRefGoogle Scholar
  29. [29]
    H. Yoshinaga, R. Horiuchi, Trans. Jpn. Inst. Metals 5, 14 (1964)CrossRefGoogle Scholar
  30. [30]
    P.W. Flynn, J. Mote, J.E. Dorn, Trans. Metall. Soc. AIME 221, 1148 (1961)Google Scholar
  31. [31]
    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng., A 432, 170 (2006)CrossRefGoogle Scholar
  32. [32]
    T. Obara, H. Yoshinga, S. Morozumi, Acta Metall. 21, 845 (1973)CrossRefGoogle Scholar
  33. [33]
    Z. Feng, X. Zhang, F. Pan, Rare Metal. Mater. Eng. 41, 1765 (2012)Google Scholar
  34. [34]
    D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu, Scr. Metall. 3, 927 (1969)CrossRefGoogle Scholar
  35. [35]
    M.H. Yoo, S.R. Agnew, J.R. Morris, K.M. Ho, Mater. Sci. Eng., A 319, 87 (2001)CrossRefGoogle Scholar
  36. [36]
    D.X. Wen, Y.C. Lin, Y. Zhou, Vacuum 141, 316 (2017)CrossRefGoogle Scholar
  37. [37]
    Z.Y. Jin, D.H. Yu, X.T. Wu, K. Yin, K. Yan, J. Mater. Sci. Technol. 32, 1260 (2016)CrossRefGoogle Scholar
  38. [38]
    J.R. Morris, J. Scharff, K.M. Ho, D.E. Turner, Y.Y. Ye, M.H. Yoo, Philos. Mag. A 76, 1065 (1997)CrossRefGoogle Scholar
  39. [39]
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)CrossRefGoogle Scholar
  40. [40]
    D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, D.X. Wen, J. Alloys Compd. 708, 938 (2017)CrossRefGoogle Scholar
  41. [41]
    Z.H. Zhou, Q.C. Fan, Z.H. Xia, A.G. Hao, W.H. Yang, W. Ji, H.Q. Cai, J. Mater. Sci. Technol. 33, 637 (2017)CrossRefGoogle Scholar
  42. [42]
    F. Berge, L. Krüger, H. Ouaziz, C. Ullrich, Trans. Nonferrous Met. Soc. China 25, 1 (2015)CrossRefGoogle Scholar
  43. [43]
    D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, M. He, Mater. Sci. Eng., A 620, 319 (2015)CrossRefGoogle Scholar
  44. [44]
    J. Koike, Mater. Sci. Forum 419, 189 (2003)CrossRefGoogle Scholar
  45. [45]
    J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Mater. Trans. 44, 445 (2005)CrossRefGoogle Scholar
  46. [46]
    H.Y. Wu, C.T. Wu, J.C. Yang, M.J. Lin, Mater. Sci. Eng., A 607, 261 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Zhao-Yang Jin
    • 1
    Email author
  • Nan-Nan Li
    • 1
  • Kai Yan
    • 1
  • Jian Wang
    • 2
  • Jing Bai
    • 3
  • Hongbiao Dong
    • 4
  1. 1.School of Mechanical EngineeringYangzhou UniversityYangzhouChina
  2. 2.School of Physics and Optoelectronic EngineeringNanjing University of Information Science and TechnologyNanjingChina
  3. 3.School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  4. 4.Department of EngineeringUniversity of LeicesterLeicesterEngland

Personalised recommendations