Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 503–514 | Cite as

Hot Deformation Behavior and Processing Maps of a High Al-low Si Transformation-Induced Plasticity Steel: Microstructural Evolution and Flow Stress Behavior

  • H. Q. Huang
  • H. S. Di
  • N. Yan
  • J. C. Zhang
  • Y. G. Deng
  • R. D. K. Misra
  • J. P. Li
Article
  • 47 Downloads

Abstract

Hot deformation behavior of a high Al-low Si transformation-induced plasticity (TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200 °C and strain rate range of 0.01–10 s−1. The constitutive equations of the TRIP steel were established at high temperature by fitting the strain factor with a sixth-order polynomial. The instability during hot rolling was discussed using processing maps. The results reveal that two types of flow stress curves (dynamic recrystallization and dynamic recovery) were observed during the hot compression of the high Al-low Si TRIP steel. Flow stress decreased with increasing deformation temperature and decreasing strain rate. The predicted flow stress of experimental TRIP steel is in agreement with the experimental values with an average absolute relative error of 4.49% and a coefficient of determination of 0.9952. According to the obtained processing maps, the TRIP steel exhibits a better workability at strain rate of 0.1 s−1 and deformation temperature of 1200 °C as compared to other deformation conditions.

Keywords

TRIP steel Hot compression Constitutive equation Processing maps 

Notes

Acknowledgements

This work was financially supported by the National Program on Key Basic Research Project (Grant No. 2011CB606306-2) and the National Natural Science Foundation of China (Grant No. 51775102).

References

  1. [1]
    T. Manabu, Y. Hiroshi, H. Shinji, Properties of TRIP type high strength steels. in International Conference on TRIP-Aided High Strength Ferrous Alloys. (Ghent, Belgium, 2002)Google Scholar
  2. [2]
    B. Mintz, Int. Mater. Rev. 46(4), 169 (2001)CrossRefGoogle Scholar
  3. [3]
    J. Van Slycken, P. Verleysen, J. Degrieck, J. Bouquereal, B.C. De Cooman, Mater. Sci. Eng. A 460–461, 516 (2007)CrossRefGoogle Scholar
  4. [4]
    B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8(3–4), 285 (2004)CrossRefGoogle Scholar
  5. [5]
    E.M. Bellhouse, J.R. McDermid, Metall. Mater. Trans. A 41(6), 1460 (2010)CrossRefGoogle Scholar
  6. [6]
    J.R. McDermid, H.S. Zurob, Y. Bian, Metall. Mater. Trans. A 242(12), 3627 (2011)CrossRefGoogle Scholar
  7. [7]
    O. Matsumura, Y. Sakuma, H. Takechi, Trans. Iron Steel Inst. Jpn. 27(7), 570 (1987)CrossRefGoogle Scholar
  8. [8]
    A.R. Marder, Prog. Mater Sci. 45(3), 191 (2000)CrossRefGoogle Scholar
  9. [9]
    M.D. Meyer, D. Vanderschueren, B.C. De Cooman, ISIJ Int. 39(8), 813 (1999)CrossRefGoogle Scholar
  10. [10]
    P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. van Humbeeck, F. Delannay, ISIJ Int. 41(9), 1068 (2001)CrossRefGoogle Scholar
  11. [11]
    J. Mahieu, B.C. De Cooman, J. Maki, Metall. Mater. Trans. A 33(8), 2573 (2002)CrossRefGoogle Scholar
  12. [12]
    J. Maki, J. Mahieu, B.C. De Cooman, S. Claessens, Mater. Sci. Technol. 19(1), 125 (2003)CrossRefGoogle Scholar
  13. [13]
    C.M. Sellars, W.J. McTegart, Acta Metall. 14(9), 1136 (1966)CrossRefGoogle Scholar
  14. [14]
    C. Sun, J. Liu, R. Li, Q. Zhang, Acta Metall. Sin. 47(2), 191 (2011). (in Chinese) Google Scholar
  15. [15]
    Y. Cao, H. Di, R.D.K. Misra, X. Yi, J. Zhang, T. Ma, Mater. Sci. Eng. A 593, 111 (2014)CrossRefGoogle Scholar
  16. [16]
    C. Sun, J. Luan, G. Liu, R. Li, Q. Zhang, Acta Metall. Sin. 48(7), 853 (2012). (in Chinese) CrossRefGoogle Scholar
  17. [17]
    N. Haghdadi, A. Zarei-Hanzaki, H.R. Abedi, Mater. Sci. Eng. A 535, 252 (2012)CrossRefGoogle Scholar
  18. [18]
    H. Wei, G. Liu, H. Zhao, R. Kang, Mater. Des. 50, 484 (2013)CrossRefGoogle Scholar
  19. [19]
    J. Zhang, H. Di, X. Wang, Y. Cao, J. Zhang, T. Ma, Mater. Des. 44, 354 (2013)CrossRefGoogle Scholar
  20. [20]
    X. Kai, C. Chen, X. Sun, C. Wang, Y. Zhao, Mater. Des. 90, 1151 (2016)CrossRefGoogle Scholar
  21. [21]
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15(10), 1883 (1984)CrossRefGoogle Scholar
  22. [22]
    Y. Cao, H. Di, J. Zhang, T. Ma, J. Zhang, Acta Metall. Sin. 49(07), 811 (2013). (in Chinese) CrossRefGoogle Scholar
  23. [23]
    C. Sun, G. Liu, Q. Zhang, R. Li, L. Wang, Mater. Sci. Eng. A 595, 92 (2014)CrossRefGoogle Scholar
  24. [24]
    J. Zhang, H. Di, K. Mao, X. Wang, Z. Han, T. Ma, Mater. Sci. Eng. A 587, 110 (2013)CrossRefGoogle Scholar
  25. [25]
    Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, Z. Chai, P. Liu, Y. Liu, Dynamic Recrystallization Behavior and Processing Map of the Cu–Cr–Zr–Nd Alloy, vol. 5 (SpringerPlus, Berlin, 2016)Google Scholar
  26. [26]
    Y.X. Liu, Y.C. Lin, Y. Zhou, Mater. Sci. Eng. A 691, 88 (2017)CrossRefGoogle Scholar
  27. [27]
    D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, X.M. Chen, J. Alloys Compd. 649, 1075 (2015)CrossRefGoogle Scholar
  28. [28]
    D.X. Wen, Y.C. Lin, Y. Zhou, Vacuum 141, 316 (2017)CrossRefGoogle Scholar
  29. [29]
    H. Wei, G. Liu, X. Xiao, H. Zhao, H. Ding, R. Kang, Mater. Sci. Eng. A 564, 140 (2013)CrossRefGoogle Scholar
  30. [30]
    S. Serajzadeh, A. Karimi Taheri, Mater. Des. 23(3), 271 (2002)CrossRefGoogle Scholar
  31. [31]
    B. Zhang, G. Zhao, L. Jiao, G. Xu, H. Qin, D. Feng, Acta Metall. Sin. 41(4), 351 (2005). (in Chinese) Google Scholar
  32. [32]
    C. Zener, J.H. Hollomon, J. Appl. Phys. 15(1), 22 (1944)CrossRefGoogle Scholar
  33. [33]
    S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Mater. Sci. Eng. A 500(1–2), 114 (2009)CrossRefGoogle Scholar
  34. [34]
    C. Sun, J. Liu, R. Li, Q. Zhang, J. Dong, Rare Met. 30(1), 81 (2011)CrossRefGoogle Scholar
  35. [35]
    Y. Lin, M. Chen, J. Zhong, Comput. Mater. Sci. 42(3), 470 (2008)CrossRefGoogle Scholar
  36. [36]
    L. Tang, J.D. Baeder, SIAM J. Sci. Comput. 20(3), 1115 (1998)CrossRefGoogle Scholar
  37. [37]
    M.P. Phaniraj, A.K. Lahiri, J. Mater. Process. Technol. 141(2), 219 (2003)CrossRefGoogle Scholar
  38. [38]
    H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics, with Application to Continuum Mechanics. 1962: Swiss Federal Institute of TechnologyGoogle Scholar
  39. [39]
    A.K. Kumar, Criteria for predicting metallurgical instabilities in processing. in M. Sc.(Eng.) Thesis, (Indian Institute of Science, Bangalore, India, 1987)Google Scholar
  40. [40]
    M. Karami, R. Mahmudi, Mater. Lett. 81, 235 (2012)CrossRefGoogle Scholar
  41. [41]
    R. Bhattacharya, B.P. Wynne, W.M. Rainforth, Scr. Mater. 67(3), 277 (2012)CrossRefGoogle Scholar
  42. [42]
    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng. A 391(1–2), 141 (2005)CrossRefGoogle Scholar
  43. [43]
    Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, Y.G. Zhou, Mater. Sci. Eng. A 528(3), 1205 (2011)CrossRefGoogle Scholar
  44. [44]
    S. Anbu Selvan, S. Ramanathan, Trans. Nonferrous Met. Soc. China 21(2), 257 (2011)CrossRefGoogle Scholar
  45. [45]
    G. Anan, S. Nakajima, M. Miyahara, S. Nanba, M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, ISIJ Int. 32(3), 261 (1992)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • H. Q. Huang
    • 1
  • H. S. Di
    • 1
  • N. Yan
    • 1
  • J. C. Zhang
    • 1
  • Y. G. Deng
    • 1
  • R. D. K. Misra
    • 2
  • J. P. Li
    • 1
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations