Acta Metallurgica Sinica (English Letters)

, Volume 30, Issue 4, pp 319–325 | Cite as

Interpenetrated Magnesium–Tricalcium Phosphate Composite: Manufacture, Characterization and In Vitro Degradation Test

  • Mariano Casas-Luna
  • Serhii Tkachenko
  • Miroslava Horynová
  • Lenka Klakurková
  • Pavel Gejdos
  • Sebastian Diaz-de-la-Torre
  • Ladislav Celko
  • Jozef Kaiser
  • Edgar B. Montufar


Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium–tricalcium phosphate (Mg–TCP) composite and its evaluation under immersion test. In the study, TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration (CAMI) technique. The microstructure, composition, distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy, elemental chemical analysis and X-ray diffraction. The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI, even small pores below 2 μm have been filled with Mg, giving to the composite a good interpenetration. The degradation rate of the Mg–TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.


Calcium phosphate Magnesium Liquid metal infiltration Spark plasma sintering Corrosion 



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie, and it is co-financed by the South Moravian Region under Grant No. 665860. Authors also acknowledge the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Program II. MCL acknowledges to Brno Ph.D. Talent scholarship founded by the Brno City Municipality. SDT acknowledges to Conacyt Mexico, through the project CB.177700, and COFAA-IPN (SIP project 20144443).


  1. [1]
    F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, W. Dietzel, N. Hort, Biomaterials 28, 2163 (2007)CrossRefGoogle Scholar
  2. [2]
    D. Pijocha, A. Zima, Z. Paszkiewicz, A. Ślósarczyk, Acta Bioeng. Biomech. 15, 53 (2013)Google Scholar
  3. [3]
    A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, K.S. Shin, Bull. Mater. Sci. 33, 43 (2010)CrossRefGoogle Scholar
  4. [4]
    K. Mensah-Darkwa, R.K. Gupta, D. Kumar, J. Mater. Sci. Technol. 29, 788 (2013)CrossRefGoogle Scholar
  5. [5]
    R.Z. LeGeros, J.P. LeGeros, Key Eng. Mat. 240–242, 3 (2003)CrossRefGoogle Scholar
  6. [6]
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)CrossRefGoogle Scholar
  7. [7]
    F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 12, 63 (2008)CrossRefGoogle Scholar
  8. [8]
    F. Witte, Acta Biomater. 23, S28 (2015)CrossRefGoogle Scholar
  9. [9]
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26, 3557 (2005)CrossRefGoogle Scholar
  10. [10]
    Y. Chen, Z. Xu, C. Smith, J. Sankar, Acta Biomater. 10, 4561 (2014)CrossRefGoogle Scholar
  11. [11]
    A. Myrissa, N.A. Agha, Y. Lu, E. Martinelli, J. Eichler, G. Szakács, C. Kleinhans, R. Willumeit-Römer, U. Schäfer, A.M. Weinberg, Mater. Sci. Eng. 61, 865 (2016)CrossRefGoogle Scholar
  12. [12]
    X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30, 484 (2009)CrossRefGoogle Scholar
  13. [13]
    M. Bohner, Injury 31, D37 (2000)CrossRefGoogle Scholar
  14. [14]
    H. Yuan, Z. Yang, Y. Li, X. Zhang, J.D. de Bruijn, K. de Groot, J. Mater. Sci. Mater. Med. 9, 723 (1998)CrossRefGoogle Scholar
  15. [15]
    J. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, J. Biomed. Mater. Res. A 63, 408 (2002)CrossRefGoogle Scholar
  16. [16]
    O. Gauthier, J.M. Bouler, E. Aguado, P. Pilet, G. Daculsi, Biomaterials 19, 133 (1998)CrossRefGoogle Scholar
  17. [17]
    V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)CrossRefGoogle Scholar
  18. [18]
    B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S. Ryu, S.S. Chung, K.W. Park, Biomaterials 21, 1291 (2000)CrossRefGoogle Scholar
  19. [19]
    X. Miao, L.P. Tan, L.S. Tan, X. Huang, Mater. Sci. Eng. 27, 274 (2007)CrossRefGoogle Scholar
  20. [20]
    J. Franco, P. Hunger, M.E. Launey, A.P. Tomsia, E. Saiz, Acta Biomater. 6, 218 (2010)CrossRefGoogle Scholar
  21. [21]
    A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, Acta Biomater. 27, 264 (2015)CrossRefGoogle Scholar
  22. [22]
    A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Müller, Acta Biomater. 7, 907 (2011)CrossRefGoogle Scholar
  23. [23]
    J.A. Lewisw, J.E. Smay, J. Stuecker, J. Cerarano, J. Am. Ceram. Soc. 89, 3599 (2006)CrossRefGoogle Scholar
  24. [24]
    P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, J. Biomed. Mater. Res. A 85, 218 (2008)CrossRefGoogle Scholar
  25. [25]
    S. Michna, W. Wua, J.A. Lewis, Biomaterials 26, 5632 (2005)CrossRefGoogle Scholar
  26. [26]
    P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Acta Biomater. 2, 457 (2006)CrossRefGoogle Scholar
  27. [27]
    D.R. Clarke, J. Am. Ceram. Soc. 75, 739 (1992)CrossRefGoogle Scholar
  28. [28]
    A. Mattern, B. Huchler, D. Staudenecker, R. Oberacker, A. Nagel, M.J. Hoffmann, J. Eur. Ceram. Soc. 24, 3399 (2004)CrossRefGoogle Scholar
  29. [29]
    K.M.S. Manu, L.A. Raag, T.P.D. Rajan, M. Gupta, B.C. Pai, Metall. Mater. Trans. B 47, 2799 (2016)CrossRefGoogle Scholar
  30. [30]
    S. Grasso, Y. Sakka, G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009)CrossRefGoogle Scholar
  31. [31]
    R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng., R 63, 127 (2009)CrossRefGoogle Scholar
  32. [32]
    K. Konopka, M.C. Maj, K.J. Kurzydlowski, Mater. Charact. 51, 335 (2003)CrossRefGoogle Scholar
  33. [33]
    Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008)CrossRefGoogle Scholar
  34. [34]
    Alloy Phase Diagram, In: ASM handbook, vol. 3 (ASM International, The Materials Information Company, Geauga County, 1992)Google Scholar
  35. [35]
    A. Gozalian, A. Behnamghader, M. Daliri, A. Moshkforoush, Sci. Iran. F 18, 1614 (2011)CrossRefGoogle Scholar
  36. [36]
    I. Rocnáková, E.B. Montufar, M. Horynová, T. Zikmund, K. Novotný, L. Klakurková, L. Celko, G.L. Song, J. Kaiser, Corros. Sci. 104, 187 (2016)CrossRefGoogle Scholar
  37. [37]
    F. Shapiro, Eur. Cells Mater. 15, 53 (2008)CrossRefGoogle Scholar
  38. [38]
    S. Shadanbaz, G.J. Dias, Acta Biomater. 8, 20 (2012)CrossRefGoogle Scholar
  39. [39]
    F.Z. Cui, J.X. Yang, Y.P. Jiao, Q.S. Yin, Y. Zhang, I.S. Lee, Front. Mater. Sci. China 2, 143 (2008)CrossRefGoogle Scholar
  40. [40]
    L. Xu, F. Panc, G. Yu, L. Yang, E. Zhang, K. Yang, Biomaterials 30, 1512 (2009)CrossRefGoogle Scholar
  41. [41]
    G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mariano Casas-Luna
    • 1
  • Serhii Tkachenko
    • 1
  • Miroslava Horynová
    • 1
  • Lenka Klakurková
    • 1
  • Pavel Gejdos
    • 1
  • Sebastian Diaz-de-la-Torre
    • 2
  • Ladislav Celko
    • 1
  • Jozef Kaiser
    • 1
  • Edgar B. Montufar
    • 1
  1. 1.CEITEC - Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  2. 2.CIITEC - Centro de Investigación e Innovación TecnológicaInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations