Acta Metallurgica Sinica (English Letters)

, Volume 30, Issue 4, pp 390–398 | Cite as

Corrosion Resistance of Transmission Pipeline Steel Coated with Five Types of Enamels

  • Liang Fan
  • Fujian Tang
  • Signo T. Reis
  • Genda Chen
  • Michael L. Koenigstein


Corrosion is one of the main causes of incidents occurred in hazardous liquid and gas transmission pipelines in the USA, resulting in a loss of over $12 billion per year. In this study, the corrosion resistance of pipeline steel coated with five types of enamel was investigated in 3.5 wt% NaCl solution with linear polarization resistance and electrochemical impedance spectroscopy tests. Steel coupons were cut from API 5L X65 pipeline steel and coated with five types of enamels using the wet process. The microstructures of all enamel samples were examined by scanning electron microscopy. Experimental results indicate that all enamel coatings increase the corrosion resistance of pipeline steel, and pure enamel PE2, mixed enamels ME1 and ME2 have higher corrosion resistances than pure enamel PE1 and mixed enamel ME3.


Steel pipe Enamel coating Scanning electron microscopy (SEM) Electrochemical impedance spectroscopy (EIS) 



The authors gratefully acknowledge the financial support provided by the US Department of Transportation under Award No. DTPH5615HCAP10. The findings and opinions expressed in this paper are those of the authors only and do not necessarily reflect the views of the sponsor.


  1. [1]
    The state of the national pipeline infrastructure, US Department of TransportationGoogle Scholar
  2. [2]
    Z. Liu, X. Gao, C. Yu, L. Du, J. Li, P. Hao, Acta Metall. Sin. (Engl. Lett.) 28, 6 (2015)Google Scholar
  3. [3]
    X. Shi, Y. Wei, W. Wang, L. Zhao, Y. Shan, K. Yang, Acta Metall. Sin. (Engl. Lett.) 28, 7 (2015)CrossRefGoogle Scholar
  4. [4]
    L. Fan, Z. Liu, W. Guo, J. Hou, C. Du, X. Li, Acta Metall. Sin. (Engl. Lett.) 28, 7 (2015)CrossRefGoogle Scholar
  5. [5]
    T. Wu, M. Yan, D. Zeng, J. Xu, C. Yu, C. Sun, W. Ke, Acta Metall. Sin. (Engl. Lett.) 28, 1 (2015)CrossRefGoogle Scholar
  6. [6]
    S. Ranade, M. Forsyth, M.Y.J. Tan, Prog. Org. Coat. 101, 111 (2016)CrossRefGoogle Scholar
  7. [7]
    W. Wang, Q. Wang, C. Wang, J. Yi, J. Loss Prev. Process Ind. 29, 163 (2014)CrossRefGoogle Scholar
  8. [8]
    O. Martínez, M. Elena, J.M. Flores, J. Genesca, J. Loss Prev. Process Ind. 35, 19 (2015)CrossRefGoogle Scholar
  9. [9]
    Y. Charron, S. Duval, D. Melot, S. Shaw, V. Alary, Designing for internally coated pipelines, in The 16th International Conference on Pipeline Protection, Paphos, Cyprus, 2–4 November 2005Google Scholar
  10. [10]
    L.T. Pretorius, New application technology for internal pipeline coatings in situ pipeline protection using pigging techniques, in The NACE International Corrosion Conference, San Diego, California, 12–16 March 2006Google Scholar
  11. [11]
    R.S. Lauer, The use of high performance polymeric coatings to mitigate corrosion and deposit formation in pipeline applications, in The NACE International Corrosion Conference, Nashville, Tennessee, 11–15 March 2007Google Scholar
  12. [12]
  13. [13]
    V. Hock, S. Morefield, D. Day, C. Weiss, P. Malone, The use of vitreous enamel coatings to improve bonding and reduce corrosion in concrete reinforcing steel, in The NACE International Corrosion Conference, New Orleans, Louisiana, 16–20 March 2008Google Scholar
  14. [14]
    S. Rossi, N. Parziani, C. Zanella, Wear 332–333, 702 (2015)CrossRefGoogle Scholar
  15. [15]
    F. Tang, G. Chen, J.S. Volz, R.K. Brow, M.L. Koenigstein, Cem. Concr. Compos. 35, 171 (2013)CrossRefGoogle Scholar
  16. [16]
    E. Sadeghimeresht, N. Markocsan, P. Nylén, Coatings 6, 2 (2016)CrossRefGoogle Scholar
  17. [17]
    G.W. Walter, Corros. Sci. 26, 9 (1986)Google Scholar
  18. [18]
    F. Tang, G. Chen, J.S. Volz, R.K. Brow, M. Koenigstein, Constr. Build. Mater. 35, 376 (2012)CrossRefGoogle Scholar
  19. [19]
    S.V. Harb, F.C. dos Santos, B.L. Caetano, S.H. Pulcinelli, C.V. Santilli, P. Hammer, RSC Adv. 5, 20 (2015)CrossRefGoogle Scholar
  20. [20]
    C. Zhu, R. Xie, J. Xue, L. Song, Electrochim. Acta 56, 16 (2011)Google Scholar
  21. [21]
    Y. Zuo, R. Pang, W. Li, J.P. Xiong, Y.M. Tang, Corros. Sci. 50, 12 (2008)CrossRefGoogle Scholar
  22. [22]
    M.J.R. Presa, R.I. Tucceri, M.I. Florit, D. Posadas, J. Electroanal. Chem. 502, 1 (2001)CrossRefGoogle Scholar
  23. [23]
    Z. Yao, Z. Jiang, F. Wang, Electrochim. Acta 52, 13 (2007)Google Scholar
  24. [24]
    E.O. Mark, T. Bernard, Electrochemical Impedance Spectroscopy (Wiley-Interscience, New York, 2008), p. 233Google Scholar
  25. [25]
    F. Tang, X. Cheng, G. Chen, R.K. Brow, J.S. Volz, M.L. Koenigstein, Electrochim. Acta 92, 36 (2013)CrossRefGoogle Scholar
  26. [26]
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta 55, 21 (2010)CrossRefGoogle Scholar
  27. [27]
    P. Córdoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, Electrochim. Acta 72, 172–178 (2012)CrossRefGoogle Scholar
  28. [28]
    H.H. Hassan, E. Abdelghani, M.A. Amin, Electrochim. Acta 52, 22 (2007)Google Scholar
  29. [29]
    X. Liu, J. Xiong, Y. Lv, Y. Zuo, Prog. Org. Coat. 64, 4 (2009)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Liang Fan
    • 1
  • Fujian Tang
    • 1
  • Signo T. Reis
    • 2
  • Genda Chen
    • 1
  • Michael L. Koenigstein
    • 2
  1. 1.Department of Civil, Architectural, and Environmental EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Pro-Perma Engineered CoatingsRoesch Inc.BellevilleUSA

Personalised recommendations