Acta Metallurgica Sinica (English Letters)

, Volume 30, Issue 4, pp 376–389 | Cite as

Threshold Chloride Concentrations and Passivity Breakdown of Rebar Steel in Real Concrete Solution at Different pH Conditions with the Addition of Glycerol

  • Robert Blair
  • Batric PesicEmail author
  • Jacob Kline
  • Ian Ehrsam
  • Krishnan Raja


Addition of glycerol as a viscosity modifier in concrete is proposed to decrease the permeability of corrosion-inducing ions such as chloride and sulfate. In addition to controlling the permeability of concrete, glycerol could perform as an inhibitor of corrosion of rebar steel. Cyclic polarization studies were carried out on metallographically polished rebar steel specimens in actual concrete solutions at two different pH conditions (pH 12.5 and 9.0) and different chloride concentrations. The threshold concentration of chloride for passivity breakdown at pH 12.5 was greater than 50 × 10−3 mol/L in the absence of glycerol addition. The threshold increased to 81 × 10−3 mol/L upon addition of 2 wt% glycerol. The threshold chloride concentration for passivity breakdown in pH 9.0 cement solution was 0.2 × 10−3 mol/L without glycerol addition. No beneficial effect of glycerol was observed in the low pH condition. However, glycerol enhanced the passivation kinetics of the rebar steel in saturated cement solution, but did not affect the electronic properties of the passive layer. The passive layers exhibited n-type semiconductivity with a charge carrier density in the range of 2–7.5 × 1020 cm−3. Polarization of the specimens to potentials is higher than oxygen evolution potential, resulted in transition top-type semiconducting character due to an accumulation of holes. This phenomenon could be related to the passivity breakdown.


Corrosion Passive film Electrochemical impedance spectroscopy (EIS) 



This research was supported by the US Department of Energy under the NEUP PROGRAM, Contract No. DE-NE0000659-003.


  1. [1]
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE (1974)Google Scholar
  2. [2]
    B. Huet, V.L. Hostis, F. Miserque, H. Idrissi, Electrochim. Acta 51, 172 (2005)CrossRefGoogle Scholar
  3. [3]
    H. Xu, Y. Liu, W. Chen, R.G. Du, C.J. Lin, Electrochim. Acta 54, 4067 (2009)CrossRefGoogle Scholar
  4. [4]
    D. Sugiyama, T. Fujita, Cem. Concr. Res. 34, 1499 (2004)CrossRefGoogle Scholar
  5. [5]
    H.M. Jennings, J.W. Bullard, J.J. Thomas, J.E. Andrade, J.J. Chen, J. Adv. Concrete Technol. 6, 5 (2008)Google Scholar
  6. [6]
    V.S. Ramachandran, Mater. Struct. 4, 3 (1971)Google Scholar
  7. [7]
    Y.M. Tang, Y.F. Miao, Y. Zuo, G.O. Zhang, C.L. Wang, Constr. Build. Mater. 30, 252 (2012)CrossRefGoogle Scholar
  8. [8]
    G. Song, Cem. Concr. Res. 30, 1723 (2000)CrossRefGoogle Scholar
  9. [9]
    H. Stade, Cem. Concr. Res. 19, 802 (1989)CrossRefGoogle Scholar
  10. [10]
    W. Chen, R.G. Du, C.Q. Ye, Y.F. Zhu, C.J. Lin, Electrochim. Acta 55, 5677 (2010)CrossRefGoogle Scholar
  11. [11]
    M. Moreno, W. Morris, M.G. Alvarez, G.S. Duffo, Corros. Sci. 4B, 2681 (2004)CrossRefGoogle Scholar
  12. [12]
    Dale P. Bentz, Kenneth A. Snyder, Laura C. Cass, Max A. Peltz, Cement Concr. Compos. 30, 674 (2008)CrossRefGoogle Scholar
  13. [13]
    M. Pourbaix, Atlas of Electrochem. Equilibrium in Aqueous Solutions, 2nd edn. (NACE International, Houston Texas, 1974), p. 309Google Scholar
  14. [14]
    M. Simoes, S. Baranton, C. Coutonceau, Chem. Sus. Chem. 5, 2106 (2012)CrossRefGoogle Scholar
  15. [15]
    M. Simoes, S. Baranton, C. Coutonceau, Appl. Catal. B 110, 40 (2011)CrossRefGoogle Scholar
  16. [16]
    N.A. Darwish, F. Hillbert, W.J. Lorenz, H. Rosswag, Electochim. Acta 18, 421 (1973)CrossRefGoogle Scholar
  17. [17]
    T. Zakroczymski, C.J. Fan, Z. Szklarska-Smialowska, J. Electrochem. Soc. 132, 2868 (1985)CrossRefGoogle Scholar
  18. [18]
    T. Mizuno, J. Jpn. Inst. Met. 50, 1009 (1986)Google Scholar
  19. [19]
    G.T. Burstein, D.H. Davies, J. Electrochem. Soc. 128, 33 (1981)CrossRefGoogle Scholar
  20. [20]
    M. Sanchez, J. Gregori, M.C. Alonso, J.J. Garcia-Jareno, F. Vicente, Electrochim. Acta 52, 47 (2006)CrossRefGoogle Scholar
  21. [21]
    M. Sanchez, J. Gregori, C. Alonso, J.J. Garcia-Jareno, H. Takenouti, F. Vicente, Electrochim. Acta 52, 7634 (2007)CrossRefGoogle Scholar
  22. [22]
    S. Scharrifi-Asl, F. Mao, P. Lu, B. Kursten, D.D. Macdonald, Corros. Sci. 98, 708 (2015)CrossRefGoogle Scholar
  23. [23]
    J. Williamson, O.B. Isgor, Corros. Sci. 106, 82 (2016)CrossRefGoogle Scholar
  24. [24]
    K.G.U. Wijayantha, S. Saremi-Yarahmadi, L.M. Peter, Phys. Chem. Chem. Phys. 13, 5264 (2011)CrossRefGoogle Scholar
  25. [25]
    D.D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992)CrossRefGoogle Scholar
  26. [26]
    E. Gileadi, Physical Electrochemisty: Fundamentals, Techniques and Applications (Wiley-VCH, Hoboken, 2011), pp. 105–108Google Scholar
  27. [27]
    R.L. Doyle, M.E.G. Lyons, Phys. Chem. Chem. Phys. 15, 5224 (2013)CrossRefGoogle Scholar
  28. [28]
    P. Liao, J.A. Keith, E.A. Carter, J. Am. Chem. Soc. 134, 13296 (2012)CrossRefGoogle Scholar
  29. [29]
    A.M.P. Simoes, M.G.S. Ferreira, B. Randot, M. Cunha Belo, J. Electrochem. Soc. 137, 82 (1990)CrossRefGoogle Scholar
  30. [30]
    A.J. Davenport, L.J. Oldonsky, M.P. Ryan, M.F. Toney, J. Electrochem. Soc. 147, 2162 (2000)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Robert Blair
    • 1
  • Batric Pesic
    • 1
    Email author
  • Jacob Kline
    • 1
  • Ian Ehrsam
    • 1
  • Krishnan Raja
    • 1
  1. 1.Chemical and Materials EngineeringUniversity of IdahoMoscowUSA

Personalised recommendations