Acta Metallurgica Sinica (English Letters)

, Volume 29, Issue 4, pp 388–398 | Cite as

Structure, Electrical Resistivity and Superconductivity of Low-alloyed γ-U Phase Retained to Low Temperatures by Means of Rapid Cooling

  • M. Krupska
  • N.-T. H. Kim-NganEmail author
  • S. Sowa
  • M. Paukov
  • I. Tkach
  • D. Drozdenko
  • L. Havela
  • Z. Tarnawski


The γ-U phase alloys can be retained down to low temperatures with less required alloying concentration by using the splat-cooling technique with a cooling rate better than 106 K/s. Doping with 15 at.% Mo, Pt, Pd, Nb leads to a stabilization of the cubic γ-U phase, while it requires much higher Zr concentrations (≥30 at.% Zr). All U–T splats become superconducting with T c in the range of 0.61–2.11 K. A good agreement of the experimentally observed specific-heat jump at T c with that from BCS theory prediction was obtained for U-15 at.% Mo consisting of the γ-U phase with an ideal bcc A2 structure.


Crystal structure Electrical resistivity Metallic system Superconductivity 



This work was supported by the Czech Science Foundation under the Grant No. 15-01100S. Experiments were partly performed at MLTL ( supported within the program of Czech Research Infrastructures (No. LM2011025). M.P. was supported by the Grant Agency of the Charles University under the Project No. 1332314. Participation of Krakow group was supported by the Czech-Polish cooperation in the scope of Czech-Polish project 7AMB14PL036 (9004/R14/R15). N-T.H.K-N acknowledges the European Regional Development Fund under the Infrastructure and Environment Programme.


  1. [1]
    I. Grenthe, J. Drozdzynski, T. Fujino, E.C. Buck, T.E. Albrecht-Schmitt, S.F. Wolf, in The Chemistry of the Actinide and Transactinide Elements, vol. 1, ed. by L.R. Morss, N. Edelstein, J. Fuger, J.J. Katz (Springer, 2006), p. 253Google Scholar
  2. [2]
    H.L. Yakel, A review of X-ray diffraction studies in uranium alloys, in Proceedings of the Physical Metallurgy of Uranium Alloys Conference, Vail, Colorado, USA, 12–14 February 1974Google Scholar
  3. [3]
    G. Aschermann, E. Justi, Phys. Z. 43, 207 (1942)Google Scholar
  4. [4]
    G.H. Lander, E.S. Fisher, S.D. Bader, Adv. Phys. 43, 1 (1994)CrossRefGoogle Scholar
  5. [5]
    J.C. Lashley, J.C. Lashley, B.E. Lang, J. Boerio-Goates, B.F. Woodfield, G.M. Schmiedeshoff, E.C. Gay, C.C. McPheeters, D.J. Thoma, W.L. Hults, J.C. Cooley, R.J. Hanrahan Jr, J.L. Smith, Phys. Rev. B 63, 224510 (2001)CrossRefGoogle Scholar
  6. [6]
    D. Graf, R. Stillwell, T.P. Murphy, J.H. Park, M. Kano, E.C. Palm, P. Schlottmann, J. Bourg, K.N. Collar, J. Cooley, J. Lashley, J. Willit, S.W. Tozer, Phys. Rev. B 80, 241101R (2009)CrossRefGoogle Scholar
  7. [7]
    G.L. Hofman, M.K. Meyer, A.E. Ray, Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications, in Proceedings of International Reduced Enrichment for Research and Test Reactors Conference, Sao Paulo, Brazil, 18–20 October 1998Google Scholar
  8. [8]
    V.P. Sinha, P.V. Hegde, G.J. Prasad, G.K. Dey, H.S. Kamath, J. Alloys Compd. 506, 253 (2010)CrossRefGoogle Scholar
  9. [9]
    S. Van Den Berghe, A. Leenaers, E. Koonen, L. Sannen, Adv. Sci. Technol. 73, 78 (2010)CrossRefGoogle Scholar
  10. [10]
    S. Van Den Berghe, P. Lemoine, Nucl. Eng. Technol. 46, 125 (2014)CrossRefGoogle Scholar
  11. [11]
    M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, K.-H. Kim, J. Nucl. Mater. 304, 221 (2002)CrossRefGoogle Scholar
  12. [12]
    D.E. Burkes, R. Prabhakaran, T. Hartmann, J.-F. Jue, F.J. Rice, Nucl. Eng. Des. 240, 1332 (2010)CrossRefGoogle Scholar
  13. [13]
    J. Lisboa, J. Marin, M. Barrera, H. Pesenti, World J. Nucl. Sci. Technol. 5, 274 (2015)CrossRefGoogle Scholar
  14. [14]
    B.S. Chandrasekhar, J.K. Hulm, J. Phys. Chem. Solids 7, 259 (1958)CrossRefGoogle Scholar
  15. [15]
    T.G. Berlincourt, J. Phys. Chem. Solids 11, 12 (1959)CrossRefGoogle Scholar
  16. [16]
    H. Jones, Rep. Prog. Phys. 36, 1425 (1973)CrossRefGoogle Scholar
  17. [17]
    R. Ray, E. Musso, U.S. Patent 3,981,722, 21 Sept 1976Google Scholar
  18. [18]
    I. Tkach, N.-T.H. Kim-Ngan, S. Mašková, M. Dzevenko, L. Havela, A. Warren, C. Stitt, T. Scott, J. Alloys Compd. 534, 101 (2012)CrossRefGoogle Scholar
  19. [19]
    N.-T.H. Kim-Ngan, I. Tkach, S. Maškova, A.P. Goncalves, L. Havela, J. Alloys Compd. 580, 223 (2013)CrossRefGoogle Scholar
  20. [20]
    G.C. Allen, P.M. Tucker, R.A. Lewis, J. Chem. Soc., Faraday Trans. II 80, 991 (1984)Google Scholar
  21. [21]
    N.-T.H. Kim-Ngan, M. Paukov, S. Sowa, M. Krupska, I. Tkach, L. Havela, J. Alloys Compd. 645, 158 (2015)CrossRefGoogle Scholar
  22. [22]
    A. Dommann, F. Hulliger, Solid State Commun. 65, 1093 (1988)CrossRefGoogle Scholar
  23. [23]
    B.A.S. Ross, D.E. Peterson, Bull. Alloy Ph. Diagr. 11, 240 (1990)CrossRefGoogle Scholar
  24. [24]
    H. Kleykamp, Pure Appl. Chem. 63, 1401 (1991)CrossRefGoogle Scholar
  25. [25]
    K. Tangri, D.K. Chaudhuri, J. Nucl. Mat. 15, 278 (1965)CrossRefGoogle Scholar
  26. [26]
    M. Anagnostidis, M. Colombia, H. Monti, J. Nucl. Mat. 11, 67 (1964)CrossRefGoogle Scholar
  27. [27]
    S. Dash, K. Ghoshal, T.R.G. Kutty, J. Therm. Anal. Calorim. 112, 179 (2013)CrossRefGoogle Scholar
  28. [28]
    J.G. Huber, P.H. Ansari, Phys. B 135, 441 (1985)CrossRefGoogle Scholar
  29. [29]
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964)CrossRefGoogle Scholar
  30. [30]
    I. Tkach, N.-T.H. Kim-Ngan, A. Warren, T. Scott, A.P. Goncalves, L. Havela, Physica C 498, 14 (2014)CrossRefGoogle Scholar
  31. [31]
    N.-T.H. Kim-Ngan, S. Sowa, M. Krupska, M. Paukov, I. Tkach, L. Havela, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 015007 (2015)CrossRefGoogle Scholar
  32. [32]
    N. Toyota, A. Inoue, K. Matsuzaki, T. Fukase, T. Masumoto, J. Phys. Soc. Jpn. 53, 924 (1984)CrossRefGoogle Scholar
  33. [33]
    A. Slebarski, J. Goraus, J. Deniszczyk, L. Skoczen, J. Phys.: Condens. Matter 18, 10319 (2006)Google Scholar
  34. [34]
    A. Otop, I. Maksimov, E.-W. Scheidt, J.A. Mydosh, S. Sullow, Physica B 378–380, 371 (2006)CrossRefGoogle Scholar
  35. [35]
    J.S. Dugdale, Contemp. Phys. 28, 547 (1987)CrossRefGoogle Scholar
  36. [36]
    R.D. Barnard, Proc. Phys. Soc. 78, 722 (1961)CrossRefGoogle Scholar
  37. [37]
    L.E. DeLong, J.G. Huber, K.N. Yang, M.B. Maple, Phys. Rev. Lett. 51, 312 (1983)CrossRefGoogle Scholar
  38. [38]
    O. Pena, Physica C 514, 95 (2015)CrossRefGoogle Scholar
  39. [39]
    I. Tkach, S. Maskova, Z. Matej, N.-T.H. Kim-Ngan, A.V. Andreev, L. Havela, Phys. Rev. B 88, 060407R (2013)CrossRefGoogle Scholar
  40. [40]
    I. Tkach, M. Paukov, D. Drozdenko, M. Cieslar, B. Vondrackova, Z. Matej, D. Kriegner, A.V. Andreev, N.-T.H. Kim-Ngan, I. Turek, M. Divis, L. Havela, Phys. Rev. B 91, 115116 (2015)CrossRefGoogle Scholar
  41. [41]
    A.V. Andreev, S.M. Zadvorkin, M.I. Bartashevich, T. Goto, J. Kamarad, Z. Arnold, H. Drulis, J. Alloys Compd. 267, 32 (1998)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Krupska
    • 1
  • N.-T. H. Kim-Ngan
    • 1
    Email author
  • S. Sowa
    • 1
  • M. Paukov
    • 2
  • I. Tkach
    • 2
  • D. Drozdenko
    • 2
  • L. Havela
    • 2
  • Z. Tarnawski
    • 3
  1. 1.Institute of PhysicsPedagogical UniversityKrakówPoland
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations