Acta Metallurgica Sinica (English Letters)

, Volume 28, Issue 7, pp 799–808 | Cite as

HIC and SSC Behavior of High-Strength Pipeline Steels

  • Xian-Bo Shi
  • Wei Yan
  • Wei Wang
  • Lian-Yu Zhao
  • Yi-Yin Shan
  • Ke YangEmail author


In this study, hydrogen-induced cracking (HIC) and sulfide stress corrosion cracking (SSC) behaviors of high-strength pipeline steels in four different strength grades (X70, X80, X90 and X100) with the microstructure of acicular ferrite were estimated. The results showed that both of X70 and X80 steels exhibited better HIC resistance, and their susceptibility to HIC increased with the strength grade. HIC parameters, including cracking length ratio, cracking thickness ratio (CTR) and cracking sensitivity ratio, were all increased, and among these, the CTR increased most, with the increase in the strength grade. HIC was found to initiate and grow along the hard boundaries such as large size martensite/austenite (M/A) islands and bainitic ferrite. In addition, the density of hydrogen-induced blister on the steel surface was increased with the decrease in pH value for the same-grade pipeline steels. SSC susceptibilities of X80, X90 and X90-C were revealed to subsequently decrease, which was related to the large size M/A islands.


Hydrogen-induced cracking Sulfide stress corrosion cracking High-strength pipeline steel Martensite/austenite island (M/A) 



This work was financially supported by the National Key Technologies R&D Program of China (No. 2011BAE25B03). Thanks are given to Prof. Wei Sha at the Queen’s University Belfast for his efforts on this article.


  1. [1]
    M.A. Al-Anezi, G.S. Frankel, A.K. Agrawal, Corrosion 55, 1101 (1999)CrossRefGoogle Scholar
  2. [2]
    K.T. Corbett, R.R. Bowen, C.W. Petersen, Int. J. Offshore Polar Eng. 14, 75 (2004)Google Scholar
  3. [3]
    C. Mendibide, T. Sourmail, Corros. Sci. 51, 2795 (2009)CrossRefGoogle Scholar
  4. [4]
    M.C. Zhao, Y.Y. Shan, Y.H. Li, K. Yang, Acta Metall. Sin. 37, 1087 (2001). (in Chinese)Google Scholar
  5. [5]
    M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, Y.H. Li, Mater. Lett. 57, 141 (2002)CrossRefGoogle Scholar
  6. [6]
    S.U. Koh, H.G. Jung, K.B. Kang, G.T. Park, K.Y. Kim, Corrosion 64, 574 (2008)CrossRefGoogle Scholar
  7. [7]
    G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim, Corros. Sci. 50, 1856 (2008)CrossRefGoogle Scholar
  8. [8]
    B. Beidokhti, A. Dolati, A.H. Koukabi, Mater. Sci. Eng. A 507, 167 (2009)CrossRefGoogle Scholar
  9. [9]
    S.S. Nayaka, R.D.K. Misra, J. Hartmann, F. Siciliano, J.M. Gray, Mater. Sci. Eng. A 494, 456 (2008)CrossRefGoogle Scholar
  10. [10]
    Z. Shen, Y.H. Li, Y.Y. Shan, K. Liu, K. Yang, Acta Metall. Sin. 44, 215 (2008). (in Chinese)Google Scholar
  11. [11]
    D. Hardie, E.A. Charles, A.H. Lopez, Corros. Sci. 48, 4378 (2006)CrossRefGoogle Scholar
  12. [12]
    M.A. Arafina, J.A. Szpunar, Mater. Sci. Eng. A 528, 4927 (2011)CrossRefGoogle Scholar
  13. [13]
    F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, X.G. Li, Mater. Sci. Eng. A 527, 6997 (2010)CrossRefGoogle Scholar
  14. [14]
    S.W. Thompson, D.J. Colvin, G. Krauss, Metall. Trans. A 21, 1493 (1990)CrossRefGoogle Scholar
  15. [15]
    F.R. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang, Mater. Charact. 54, 305 (2005)CrossRefGoogle Scholar
  16. [16]
    W. Wang, Y.Y. Shan, K. Yang, Acta Metall. Sin. 43, 578 (2007). (in Chinese)Google Scholar
  17. [17]
    W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 502, 38 (2009)CrossRefGoogle Scholar
  18. [18]
    M.C. Zhao, K. Yang, Y.Y. Shan, Metall. Mater. Trans. A 34, 1089 (2003)CrossRefGoogle Scholar
  19. [19]
    I. Chattoraj, Sadhana 20, 199 (1995)CrossRefGoogle Scholar
  20. [20]
    A. Traidia, M. Alfano, G. Lubineau, S. Duval, A. Sherik, Int. J. Hydrog. Energy 37, 16214 (2012)CrossRefGoogle Scholar
  21. [21]
    M. Al-Mansour, A.M. Alfantazi, M. El-boujdaini, Mater. Des. 30, 4088 (2009)CrossRefGoogle Scholar
  22. [22]
    D. Hejazi, A.J. Hap, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, E.V. Pereloma, Mater. Sci. Eng. A 551, 40 (2012)CrossRefGoogle Scholar
  23. [23]
    C.A. Zapffe, C.E. Sims, Trans. Am. Inst. Min. Metall. Pet. Eng. 145, 225 (1941)Google Scholar
  24. [24]
    M.C. Zhao, K. Yang, Scr. Mater. 52, 881 (2005)CrossRefGoogle Scholar
  25. [25]
    J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, Y. Matsuda, Acta Metall. 32, 1779 (1984)CrossRefGoogle Scholar
  26. [26]
    R.M. Ale, J.M.A. Rebello, J. Charlier, Mater. Charact. 37, 89 (1996)CrossRefGoogle Scholar
  27. [27]
    W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Corros. Sci. 50, 3336 (2008)CrossRefGoogle Scholar
  28. [28]
    R.W. Revie, V.S. Sastri, G.R. Hoey, R.R. Ramsingh, D.K. Mak, M.T. Shehata, Corrosion 49, 17 (1993)CrossRefGoogle Scholar
  29. [29]
    T. Hara, H. Asahi, H. Ogawa, Corrosion 60, 1113 (2004)CrossRefGoogle Scholar
  30. [30]
    Z.Y. Liu, C.W. Du, X. Zhang, F.M. Wang, X.G. Li, Acta Metall. Sin. 26, 489 (2013). (Engl. Lett.)CrossRefGoogle Scholar
  31. [31]
    J. Kittel, V. Smanio, M. Fregonese, Corros. Sci. 52, 1386 (2010)CrossRefGoogle Scholar
  32. [32]
    G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim, Corros. Sci. 50, 1856 (2008)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xian-Bo Shi
    • 1
    • 2
  • Wei Yan
    • 1
  • Wei Wang
    • 1
  • Lian-Yu Zhao
    • 3
  • Yi-Yin Shan
    • 1
  • Ke Yang
    • 1
    Email author
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.PetroChina Pipeline CompanyLangfangChina

Personalised recommendations