Acta Metallurgica Sinica (English Letters)

, Volume 28, Issue 3, pp 394–404 | Cite as

Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method

  • M. Jay Chithra
  • M. Sathya
  • K. PushpanathanEmail author


The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated. Prepared samples have been characterized by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrometer and photoluminescence spectrometer. From X-ray diffraction profile, it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13. Microstructural study also shows that the particle size increases with pH value. Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image. The recorded ultraviolet–visible spectrum shows excitonic absorption peaks around 381 nm. The energy gap of the prepared samples has been determined from the ultraviolet–visible absorption spectrum, effective mass model equation and Tauc’s relation. It was found that the energy gap of the prepared samples decreases with increase in pH value. The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples. Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet–visible emission but not the violet and green emissions.


Zinc oxide nanoparticles pH value Crystal structure Microstructure Energy gap Photoluminescence 


  1. [1]
    M.A. Subhan, M.R. Awal, T. Ahmed, M. Younus, Acta Metall. Sin. (Engl. Lett.) 27, 223 (2014)CrossRefGoogle Scholar
  2. [2]
    Y. Yao, Q. Cao, Acta Metall. Sin. (Engl. Lett.) 26, 467 (2013)CrossRefGoogle Scholar
  3. [3]
    X. Huang, G. Li, B. Cao, M. Wang, C. Hao, J. Phys. Chem. C 113, 4381 (2009)CrossRefGoogle Scholar
  4. [4]
    X.H. Huang, C.B. Tay, Z.Y. Zhan, C. Zhang, L.X. Zheng, T. Venkatesan, S.J. Chua, Cryst. Eng. Commun. 13, 7032 (2011)CrossRefGoogle Scholar
  5. [5]
    X.H. Huang, Z.Y. Zhan, K.P. Pramoda, C. Zhang, L.X. Zheng, S.J. Chua, Cryst. Eng. Commun. 14, 5163 (2012)CrossRefGoogle Scholar
  6. [6]
    X.H. Huang, C. Zhang, C.B. Tay, T. Venkatesan, S.J. Chua, Appl. Phys. Lett. 102, 111106 (2013)CrossRefGoogle Scholar
  7. [7]
    C.Y. Luan, Y.K. Liu, Y. Jiang, J.S. Jie, I. Bello, S.T. Lee, J.A. Zapien, Vacuum 86, 737 (2012)CrossRefGoogle Scholar
  8. [8]
    A. Choi, K. Kim, H.I. Jung, S.Y. Lee, Sens. Actuators B 148, 577 (2010)CrossRefGoogle Scholar
  9. [9]
    Y.L. Wu, C.S. Lim, S. Fu, A.I.Y. Tok, H.M. Lau, F.Y.C. Boey, Nanotechnology 18, 215604 (2007)CrossRefGoogle Scholar
  10. [10]
    H. Hong, J. Shi, Y. Yang, Y. Zhang, J.W. Engle, R.J. Nickles, X. Wang, Nano Lett. 11, 3744 (2011)CrossRefGoogle Scholar
  11. [11]
    B. Kumar, S.W. Kim, Nano Energy 1, 342 (2012)CrossRefGoogle Scholar
  12. [12]
    J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, Nanotechnology 21, 405203 (2010)CrossRefGoogle Scholar
  13. [13]
    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763 (2011)CrossRefGoogle Scholar
  14. [14]
    C. Wongchoosuk, S. Choopun, A. Tuantranont, T. Kerdcharoen, Mater. Res. Innov. 13, 185 (2009)CrossRefGoogle Scholar
  15. [15]
    R. Niepelt, U.C. Schroder, J. Sommerfeld, I. Slowik, B. Rudolph, R. Moller, B. Seise, A. Csaki, W. Fritzsche, C. Ronnin, Nanoscale Res. Lett. 6, 511 (2011)CrossRefGoogle Scholar
  16. [16]
    F. Yakuphanoglu, S. Mansouri, Microelectron. Reliab. 51, 2200 (2011)CrossRefGoogle Scholar
  17. [17]
    D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Nat. Nanotechnol. 7, 465 (2012)CrossRefGoogle Scholar
  18. [18]
    W.K. Hong, S. Song, D.K. Hwang, S.S. Kwon, G. Jo, S.J. Park, T. Lee, Appl. Surf. Sci. 254, 7559 (2008)CrossRefGoogle Scholar
  19. [19]
    Z.L. Wang, Adv. Mater. 15, 432 (2003)CrossRefGoogle Scholar
  20. [20]
    K. Kasemets, M. Romet, A. Ivask, A. Kahru, Toxicol. Lett. 180, S22310 (2008)CrossRefGoogle Scholar
  21. [21]
    M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Chemosphere 71, 1308 (2008)CrossRefGoogle Scholar
  22. [22]
    V. Aruoja, A. Kahru, H.C. Dubourguier, Toxicol. Lett. 180S, S220 (2008)CrossRefGoogle Scholar
  23. [23]
    J. Zhou, N.S. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)CrossRefGoogle Scholar
  24. [24]
    D.D. Guo, C.H. Wu, H. Jiang, Q.N. Li, X.M. Wang, B.A. Chen, J. Photochem. Photobiol. B 93, 119 (2008)CrossRefGoogle Scholar
  25. [25]
    C. Chena, B. Yua, P. Liub, J.F. Liua, L. Wang, J. Ceram. Process. Res. 12, 420 (2011)Google Scholar
  26. [26]
    W.J. Li, E.W. Shi, T. Fukuda, Cryst. Res. Technol. 38, 847 (2003)CrossRefGoogle Scholar
  27. [27]
    H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology 15, 622 (2004)CrossRefGoogle Scholar
  28. [28]
    C.H. Lu, C.H. Yeh, Ceram. Int. 26, 351 (2000)CrossRefGoogle Scholar
  29. [29]
    S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Solar Energy Mater. Solar Cells 92, 1639 (2008)CrossRefGoogle Scholar
  30. [30]
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 499, 231 (2010)CrossRefGoogle Scholar
  31. [31]
    X.H. Huang, Z.Y. Zhan, X. Wang, Z. Zhang, G.Z. Xing, D.L. Guo, D.P. Leusink, L.X. Zheng, T. Wu, Appl. Phys. Lett. 97, 203112 (2010)CrossRefGoogle Scholar
  32. [32]
    K. Sivakumar, V. Senthil kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Bull. Mater. Sci. 35, 327 (2012)CrossRefGoogle Scholar
  33. [33]
    S. Manafi, A. Rouhani, S. Joughehdoust, A. Salehi, in Paper Present in 2nd International Conference on Nanotechnology (NANOCON 2010), Olomouc, Czech Republic, EU, 12–14 Oct 2010Google Scholar
  34. [34]
    K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Chem. Phys. Lett. 409, 208 (2005)CrossRefGoogle Scholar
  35. [35]
    A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)CrossRefGoogle Scholar
  36. [36]
    U. Koch, A. Fojtik, H. Weller, A. Henglein, Chem. Phys. Lett. 122, 507 (1985)CrossRefGoogle Scholar
  37. [37]
    Y. Gu, I. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3833 (2004)CrossRefGoogle Scholar
  38. [38]
    Tauc. J. (ed.), Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)Google Scholar
  39. [39]
    K. Pushpanathan, S. Sathya, M. Jay Chithra, S. Gowthami, R. Santhi, Mater. Manuf. Process. 27, 1334 (2012)CrossRefGoogle Scholar
  40. [40]
    M. Jay Chithra, K. Pushpanathan, M. Loganathan, Mater. Manuf. Process. 29, 771 (2014)CrossRefGoogle Scholar
  41. [41]
    D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A.C. Melo, E.A.G. Pineda, Mater. Chem. Phys. 115, 110 (2009)CrossRefGoogle Scholar
  42. [42]
    F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Funct. Mater. Lett. 4, 1 (2011)CrossRefGoogle Scholar
  43. [43]
    H.A. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)CrossRefGoogle Scholar
  44. [44]
    A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103 (2006)CrossRefGoogle Scholar
  45. [45]
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)CrossRefGoogle Scholar
  46. [46]
    K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurisic, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. 110, 20865 (2006)CrossRefGoogle Scholar
  47. [47]
    D. Wang, H.W. Seo, C.C. Tin, M.J. Bozack, J.R. Williams, M. Park, N. Sathitsuksanoh, A.J. Cheng, Y.H. Tzeng, J. Appl. Phys. 99, 113509 (2006)CrossRefGoogle Scholar
  48. [48]
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsGovernment Arts CollegeKarurIndia

Personalised recommendations