Acta Metallurgica Sinica (English Letters)

, Volume 27, Issue 2, pp 359–367 | Cite as

Improved Fracture Toughness of Cryorolled and Room Temperature Rolled 6082 Al Alloys

  • Vineet Kumar
  • I. V. Singh
  • B. K. Mishra
  • R. Jayaganthan


In the present work, 6082 Al alloy has been rolled to 40% and 70% thickness reductions at the cryogenic and room temperatures for the improvement in mechanical and fracture toughness properties. All cryorolled samples are subjected to aging at different temperatures, i.e., 140, 160, and 190 °C to improve the strength, ductility, and fracture toughness. The microstructures of the cryorolled (CR) and room temperature rolled (RTR) alloy after 40% and 70% thickness reductions are characterized by FE-SEM to reveal the modes of failure. The results show that the starting bulk Al alloy specimen is fractured in total ductile manner, consisting of well-developed dimples over the entire surface. The mechanical properties and fracture toughness of the 70% CR alloy are found better than 70% RTR alloy due to higher dislocations density and formation of sub-grain structures in the CR alloy.


6082 Al alloy Rolling Mechanical properties Fracture toughness J-Integral Material characterization 


  1. [1]
    S.K. Panigrahi, R. Jayaganthan, Mater. Sci. Forum 584–586, 734 (2008)CrossRefGoogle Scholar
  2. [2]
    S.K. Panigrahi, R. Jayaganthan, Mater. Sci. Eng. A 480, 299 (2008)CrossRefGoogle Scholar
  3. [3]
    Z. Vaiev, Adv. Eng. Mater. 5, 296 (2003)CrossRefGoogle Scholar
  4. [4]
    C.L. Terry, R.Z. Valiev, JOM 56, 64 (2004)Google Scholar
  5. [5]
    A. Nikolaos, S. Antonis, C. John, Mech. Mater. 58, 55 (2013)CrossRefGoogle Scholar
  6. [6]
    D. Huges, N. Hansen, Acta Mater. 45, 3871 (1997)CrossRefGoogle Scholar
  7. [7]
    Q. Wei, S. Cheng, K. Ramesha, E. Ma, Mater. Sci. Eng. 381, 71 (2004)CrossRefGoogle Scholar
  8. [8]
    N. Rajasekaran, V. Sampath, J. Min. Mater. Charact. Eng. 10, 527 (2011)Google Scholar
  9. [9]
    P. Das, S. Dutta, H. Roy, R. Jayaganthan, Int. J. Technol. Eng. Syst. 2, 143 (2011)Google Scholar
  10. [10]
    R. Valiev, R. Islamgaliev, I. Alexandrov, Prog. Mater Sci. 45, 103 (2000)CrossRefGoogle Scholar
  11. [11]
    G. Nowotnik, J. Sieniawski, A. Nowotnik, J. Achiev. Mater. Manuf. Eng. 17, 105 (2006)Google Scholar
  12. [12]
    E647-08, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards (2008)Google Scholar
  13. [13]
    E1820-11, Standard Test Method for Measurement of Fracture Toughness, Annual Book of ASTM Standards (2008)Google Scholar
  14. [14]
    E399-08, Standard Test Method for Linear-elastic Plane-strain Fractures Toughness KIc of Metallic Materials, Annual Book of ASTM Standards (2008)Google Scholar
  15. [15]
    X. Gomez, L. Galdos, C. Garcia, J. Eng. Mater. Technol. 131, 501 (2009)Google Scholar
  16. [16]
    E8/E8 M-09, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards (2009)Google Scholar
  17. [17]
    S.K. Panigrahi, R. Jayaganthan, Mater. Sci. Eng. A 528, 3147 (2011)CrossRefGoogle Scholar
  18. [18]
    D. Singh, P.N. Rao, R. Jayaganthan, Mater. Des. 50, 646 (2013)CrossRefGoogle Scholar
  19. [19]
    H. Somekawa, T. Mukai, Scr. Mater. 53, 1059 (2005)CrossRefGoogle Scholar
  20. [20]
    S. Chang, S. Seo, S. Lee, C. Kang, S. Hong, S. Dong, Mater. Sci. Forum 449, 589 (2004)CrossRefGoogle Scholar
  21. [21]
    G. Nowotnik, Archiv. Mater. Sci. Eng. 29, 93 (2008)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vineet Kumar
    • 1
  • I. V. Singh
    • 1
  • B. K. Mishra
    • 1
  • R. Jayaganthan
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations