Acta Metallurgica Sinica (English Letters)

, Volume 26, Issue 5, pp 497–502 | Cite as

Optimization of grain boundary character distribution in Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel

  • Feng Shi
  • Xiaowu Li
  • Yutong Hu
  • Chuan Su
  • Chunming Liu
Article

Abstract

Grain boundary engineering (GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice (CSL) grain boundaries (special grain boundaries) in the grain boundary character distribution (GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter diffraction (EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min. These special boundaries of high proportion effectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.

Key Words

High nitrogen austenitic stainless steel Grain boundary character distribution CSL grain boundary EBSD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Diener and M.O. Speidel, Mater. Manuf. Processes 19 (2004) 111.CrossRefGoogle Scholar
  2. [2]
    Z.Z. Yuan, Q.X. Dai, X.N. Cheng, K.M. Chen and W.W. Xu, Mater. Sci. Eng. A 475 (2008) 202.CrossRefGoogle Scholar
  3. [3]
    H. Hänninen, J. Romu, R. Ilola, J. Tervo and A. Laitinen, J. Mater. Process. Technol. 117 (2001) 424.CrossRefGoogle Scholar
  4. [4]
    D. López, N.A. Falleiros and A.P. Tschiptschin, Wear 263 (2007) 347.CrossRefGoogle Scholar
  5. [5]
    G. Stein, I. Hucklenbroich and M. Wagner, Mater. Sci. Forum 318–320 (1999) 167.CrossRefGoogle Scholar
  6. [6]
    M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara and S. Tsukamoto, ISIJ Int. 42 (2002) 1391.CrossRefGoogle Scholar
  7. [7]
    P.H. Pumphrey, In: G.A. Chadwick and D.A. Smith (Eds.), Special High Angle Boundaries, Grain Boundary Structure and Properties, Academic Press, London, 1976, pp.13–19.Google Scholar
  8. [8]
    X.Y. Fang, K. Zhang, H. Guo, W.G. Wang and B.X. Zhou, Mater. Sci. Eng. A 487 (2008) 7.CrossRefGoogle Scholar
  9. [9]
    X.Y. Fang, W.G. Wang, Z.X. Cai, C.X. Qin and B.X. Zhou, Mater. Sci. Eng. A 527 (2010) 1571.CrossRefGoogle Scholar
  10. [10]
    C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen and N. Wang, Corros. Sci. 53 (2011) 1880.CrossRefGoogle Scholar
  11. [11]
    Y. Wang, J. Kaneda and N. Shigenaka, Corros. Eng. 60 (2011) 141.Google Scholar
  12. [12]
    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato and I. Karibe, Acta Mater. 50 (2002) 2331.CrossRefGoogle Scholar
  13. [13]
    M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato and K. Sakai, Acta Mater. 54 (2006) 5179.CrossRefGoogle Scholar
  14. [14]
    R. Valerie and J. Richard, Mater. Sci. Eng. A 524 (2009) 134.CrossRefGoogle Scholar
  15. [15]
    O.V. Mishin, V.Y. Gertsman, I.V. Alexandrov and R.Z. Valiev, Mater. Sci. Eng. A 212 (1996) 281.CrossRefGoogle Scholar
  16. [16]
    K. Shigeaki, H. Masashi, T. Sadahiro and W. Tadao, Procedia Eng. 10 (2011) 112.CrossRefGoogle Scholar
  17. [17]
    B. Ravi Kumar, S. K. Das, B. Mahato, A. Das and S. Ghosh Chowdhury, Mater. Sci. Eng. A 454–455 (2007) 239.Google Scholar
  18. [18]
    M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano and M. Kawai, J. Nucl. Mater. 414 (2011) 232.CrossRefGoogle Scholar
  19. [19]
    E.A. West and G.S. Was, J. Nucl. Mater. 392 (2009) 264.CrossRefGoogle Scholar
  20. [20]
    J.A. Basinger, E.R. Homer, D.T. Fullwood and B.L. Adams, Scr. Mater. 53 (2005) 959.CrossRefGoogle Scholar
  21. [21]
    S.H. Kim, U. Erb, K.T. Aust and G. Palumbo, Scr. Mater. 44 (2001) 835.CrossRefGoogle Scholar
  22. [22]
    V.Y. Gertsman, M. Janecek and K. Tangri, Acta Mater. 44 (1996) 2869.CrossRefGoogle Scholar
  23. [23]
    F. Shi, X.W. Li, Y. Qi and C.M. Liu, Steel Res. Int. (2013). (in press)CrossRefGoogle Scholar
  24. [24]
    H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong and Y. Katada, Mater. Sci. Forum 539–543 (2007) 4962.CrossRefGoogle Scholar
  25. [25]
    W.G. Wang and B.X. Zhou, in: the 11th procceding of Chinese Stereology and Image Analysis, Chinese Society for Stereology, Ningbo, China, October 17–21, 2006. (in Chinese)Google Scholar
  26. [26]
    V. Randle, Acta Mater. 52 (2004) 4067.CrossRefGoogle Scholar
  27. [27]
    M. Kumar, A.J. Schwartz and W.E. King, Acta Mater. 50 (2002) 2599.CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feng Shi
    • 1
  • Xiaowu Li
    • 1
  • Yutong Hu
    • 1
  • Chuan Su
    • 1
  • Chunming Liu
    • 2
  1. 1.Institute of Materials Physics and Chemistry, College of SciencesNortheastern UniversityShenyangChina
  2. 2.School of Materials and MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations