Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 26, Issue 2, pp 149–156 | Cite as

Microstructure evolution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy

  • Changpeng Wang
  • Huasheng Mei
  • Rongqiang Li
  • Difan Li
  • Ling Wang
  • Jie Liu
  • Zehui Hua
  • Lijin Zhao
  • Feifei Pen
  • Hui Li
Article

Abstract

The effects of CEC passes, isothermal holding time and reheating temperature on the microstructure evolution and grain coarsening behaviour of AZ61 magnesium alloy produced by the recrystallisation and partialmelting (RAP) process were investigated. Before partial remelting, as-cast AZ61 alloy was deformed by cyclic extrusion compression (CEC) with one pass and two pass at 330 °C. After CEC, the microstructure consisted of unrecrystallized grains and deformed eutectic compounds. Increasing isothermal holding time resulted in the formation of spheroidal grains surrounded by liquid films. With increasing the isothermal holding time, the solid grain size increased and the degree of spheroidization was improved. With increasing the reheating temperature, namely increasing liquid fraction, the solid grain size obviously decreased during the period from 560 °C to 570 °C and then slightly increased after 570 °C, while the shape factor increased monotonously. During partial remelting, increasing reheating temperature can properly short the isothermal holding time to obtain fine structure. Moreover, increasing the numbers of CEC passes could produce finer semi-solid microstructure. The coarsening behavior of solid grains in the semi-solid state obeys Ostwald ripening and grain coalescence mechanisms. The coarsening rate constant, K, was 80 µm3·s−1 for samples partially remelted at 595 °C. After CEC plus partial remelting, the ideal and fine semi-solid state structure can be obtained, which was suitable for thixoforming.

Key Words

AZ61 magnesium alloy Cyclic extrusion compression Microstructure evolution Grain coarsening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z.D. Zhao, Q. Chen, C.K. Hu, S.H. Huang and Y.Q. Wang, J. Alloys Compd. 485 (2009) 627.CrossRefGoogle Scholar
  2. [2]
    Y.J. Chen, H.J. Roven, Q.D. Wang, M.P. Liu and J.B. Lin, Mater. Sci. Forum. 584 (2008) 523.CrossRefGoogle Scholar
  3. [3]
    Q. Chen, D.Y. Shu, Z.D. Zhao, Z.X. Zhao, Y.B. Wang and B.G. Yuan, Mater. Des. 40 (2012) 488.CrossRefGoogle Scholar
  4. [4]
    Q. Chen, Z.W. Huang, Z.D. Zhao, C.K. Hu and D.Y. Shu, Comput. Mater. Sci. 67 (2013) 196.CrossRefGoogle Scholar
  5. [5]
    Z.D. Zhao, Q. Chen, H.Y. Chao, C.K. Hu and S.H. Huang, Mater. Des. 32 (2011) 575.CrossRefGoogle Scholar
  6. [6]
    X.L. Zhang, T.J. Li, H.T. Teng, S.S. Xie and J.Z. Jin, Mater. Sci. Eng. A 475 (2008) 194.CrossRefGoogle Scholar
  7. [7]
    Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu and J. Hjelen, J. Alloys Compd. 462 (2008) 192.CrossRefGoogle Scholar
  8. [8]
    Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Mater. Sci. Eng. A 515 (2009) 152.CrossRefGoogle Scholar
  9. [9]
    J.G. Wang, H.Q. Lin, H.Y. Wang and Q.C. Jiang, J. Alloys Compd. 466 (2008) 98.CrossRefGoogle Scholar
  10. [10]
    Z.D. Zhao, Q. Chen, C.K. Hu and D.Y. Shu, Mater. Des. 30 (2009) 4557.CrossRefGoogle Scholar
  11. [11]
    Y.S. Cheng, Q. Chen, Z.Q. Huang and S.H. Huang, Trans. Nonferrous Met. Soc. China 20 (2010) 739.CrossRefGoogle Scholar
  12. [12]
    Y. Birol, J. Alloys Compd. 461 (2008) 132.CrossRefGoogle Scholar
  13. [13]
    Q. Chen, S.J. Luo and Z.D. Zhao, J. Alloys Compd. 477 (2009) 726.CrossRefGoogle Scholar
  14. [14]
    Q. Chen, J. Lin, D.Y. Shu, C.K Hu, Z.D. Zhao, F. Kang, S.H. Huang and B.G. Yuan, Mater. Sci. Eng. A 554 (2012) 129.CrossRefGoogle Scholar
  15. [15]
    Z.D. Zhao, Y.S. Cheng, Q. Chen, Y.B. Wang and D.Y. Shu, Trans. Nonferrous Met. Soc. China 20 (2010) 178.CrossRefGoogle Scholar
  16. [16]
    E. Tzimas and A. Zavaliangos, Mater. Sci. Eng. A 289 (2000) 228.CrossRefGoogle Scholar
  17. [17]
    Z.D. Zhao, Q. Chen, F. Kang and D.Y. Shu, J. Alloys Compd. 482 (2009) 455.CrossRefGoogle Scholar
  18. [18]
    Z.D. Zhao, Q. Chen, Z.J. Tang, Y.B. Wang and H.Q. Ning, J. Mater. Sci. 45 (2010) 3419.CrossRefGoogle Scholar
  19. [19]
    Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Trans. Nonferrous Met. Soc. China 19 (2009) 535.CrossRefGoogle Scholar
  20. [20]
    Q. Chen, Z.X. Zhao, D.Y. Shu and Z.D. Zhao, Mater. Sci. Eng. A 528 (2011) 3930.CrossRefGoogle Scholar
  21. [21]
    Q.Q. Zhang, Z.Y. Cao, Y.F. Zhang, G.H. Su and Y.B. Liu, J. Mater. Proc. Technol. 184 (2007) 195.CrossRefGoogle Scholar
  22. [22]
    F. Czerwinski, Scr. Mater. 48 (2003) 327.CrossRefGoogle Scholar
  23. [23]
    F. Czerwinski, Acta Mater. 50 (2002) 3265.Google Scholar
  24. [24]
    S.J. Luo, Q. Chen, and Z.D. Zhao, Mater. Sci. Eng. A 501 (2009) 146.CrossRefGoogle Scholar
  25. [25]
    J.G. Wang, P. Lu, H.Y. Wang, J.F. Liu and Q.C. Jiang, J. Alloys Compd. 395 (2005) 108.CrossRefGoogle Scholar
  26. [26]
    Q. Chen, Z.D. Zhao, Z.X. Zhao, C.K. Hu and D.Y. Shu, J. Alloys Compd. 509 (2011) 7303.CrossRefGoogle Scholar
  27. [27]
    Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao and B.G. Yuan, Mater. Sci. Eng. A 541 (2012) 98.CrossRefGoogle Scholar
  28. [28]
    Y.J. Chen, Q.D. Wang, J.B Lin, L.J. Zhang and C.Q. Zhai, J. Mater. Sci. 42 (2007) 7601.CrossRefGoogle Scholar
  29. [29]
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida, CIRP Annals-Manuf. Technol. 57 (2008) 716.CrossRefGoogle Scholar
  30. [30]
    S.J. Luo, Q. Chen and Z.D. Zhao, J. Alloys Compd. 477 (2009) 602.CrossRefGoogle Scholar
  31. [31]
    Z.D. Zhao, Q. Chen, H.Y. Chao and S.H. Huang, Mater. Des. 31 (2010) 1906.CrossRefGoogle Scholar
  32. [32]
    L. Zhang, Y.B. Liu, Z.Y. Cao, Y.F. Zhang and Q.Q. Zhang, J. Mater. Process. Technol. 209 (2009) 792.CrossRefGoogle Scholar
  33. [33]
    Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Mater. Sci. Eng. A 506 (2009) 8.CrossRefGoogle Scholar
  34. [34]
    X.H. Du and E.L. Zhang, Mater. Lett. 61 (2007) 2333.CrossRefGoogle Scholar
  35. [35]
    Z.D. Zhao, Q. Chen, Z.J. Tang and C.K. Hu, J. Alloys Compd. 497 (2010) 402.CrossRefGoogle Scholar
  36. [36]
    Y.J. Chen, Q.D. Wang, J.J. Peng, C.Q Zhai and W.J. Ding, J. Mater. Process. Technol. 182 (2007) 281.CrossRefGoogle Scholar
  37. [37]
    Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu and J. Hjelen, Scr. Mater. 58 (2008) 311.CrossRefGoogle Scholar
  38. [38]
    L.J. Zhang, Q.D. Wang, Y.J Chen, J.B Lin, Mater. Sci. Forum. 546 (2007) 253.CrossRefGoogle Scholar
  39. [39]
    Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin and H.J. Roven, Mater. Sci. Eng. A 527 (2010) 2265.CrossRefGoogle Scholar
  40. [40]
    H.V. Atkinson and D. Liu, Mater. Sci. Eng. A 496 (2008) 439.CrossRefGoogle Scholar
  41. [41]
    F.Y. Zhang, PhD Dissertation, University of Nanchang, Nanchang, 2008. (in Chinese)Google Scholar
  42. [42]
    Q. Chen, B.G. Yuan, G.Z. Zhao, D.Y. Shu, C.K. Hu, Z.D. Zhao and Z.X. Zhao, Mater. Sci. Eng. A 537 (2012) 25.CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Changpeng Wang
    • 1
  • Huasheng Mei
    • 1
  • Rongqiang Li
    • 1
  • Difan Li
    • 1
  • Ling Wang
    • 1
  • Jie Liu
    • 1
  • Zehui Hua
    • 1
  • Lijin Zhao
    • 1
  • Feifei Pen
    • 1
  • Hui Li
    • 1
  1. 1.No.59 Institute of China Ordnance IndustryChongqingChina

Personalised recommendations