Advertisement

Experimental study on brazing AZ31B magnesium alloy by magnalium alloys

  • Yongchao Wu
  • Wenqing QuEmail author
  • Zheng Wang
  • Hongshou Zhuang
Research Paper
  • 29 Downloads

Abstract

The Mg-68.5Al, Mg-37.5Al, and Mg-28.7Al brazing filler metals were used to braze AZ31B magnesium alloy. Microstructures of solders with different stoichiometries of Mg and Al were investigated. The brazing processes were carried out at 490 °C and held for 30 s in a resistance furnace. The microstructure evolution and mechanical properties of the three kinds of brazed joints were assessed. The effects of compositions on the performance of the joints were also summarized. Because of the melt of base metal into the brazing seam, the content of ɑ-Mg phase in the brazing seams was much higher than that in the filler metals. And then different solidification reaction occurred in the brazing seams. As the Mg content in the filler metal increased from 31.5 to 71.3 wt%, the microstructures of the filler metals and brazed joints changed markedly, the content of ɑ-Mg phase in brazing seams increased, and the joint shear strength increased from 17 to 75 MPa, which indicated that higher content of ɑ-Mg phase was beneficial to the joint property.

Graphical abstract

Keywords

Magnesium alloy Brazing filler metal Phase composition Microstructure evolution Mechanical property 

Notes

References

  1. 1.
    Hou Z, Li C, Liu L (2015) Laser-TIG hybrid welding of magnesium alloy T-joint with cold filler wire. Mater Trans 56:1–6CrossRefGoogle Scholar
  2. 2.
    Bettles C, Barnett M, (2012) Advances in wrought magnesium alloys: fundamentals of processing, properties and applications. Woodhead PublishingGoogle Scholar
  3. 3.
    Windmann M, Röttger A, Kügler H, Theisen W (2017) Microstructure and mechanical properties of the heat-affected zone in laser-welded/brazed steel 22MnB5-AA6016 aluminum/AZ31 magnesium alloy. J Mater Process Technol 247:11–18CrossRefGoogle Scholar
  4. 4.
    Padmanaban G, Balasubramanian V (2011) Optimization of pulsed current gas tungsten arc welding process parameters to attain manximum tensile strength in AZ31B magnesium alloy. T Nonferr Metal Soc 21:467–476CrossRefGoogle Scholar
  5. 5.
    Wei KW, Gao M, Wang ZM, Zeng XY (2014) Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng A 611:212–222CrossRefGoogle Scholar
  6. 6.
    Shen J, Wen LB, Li Y, Min D (2013) Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints. Mater Sci Eng A 578:303–309CrossRefGoogle Scholar
  7. 7.
    Subravel V, Padmanaban G, Balasubramanian V (2014) Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy. Trans Nonferrous Metals Soc China 24:2776–2784CrossRefGoogle Scholar
  8. 8.
    Luo Y, Ye H, Du CH, Xu HB (2012) Influence of focusing thermal effect upon AZ91D magnesium alloy weld during vacuum electron beam welding. Vacuum 86:1262–1267CrossRefGoogle Scholar
  9. 9.
    Mironov S, Onuma T, Sato YS, Kokawa H (2015) Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 100:301–312CrossRefGoogle Scholar
  10. 10.
    Lei ZL, Bi J, Li P, Guo T, Zhao YB, Zhang DM (2018) Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy. Opt Laser Technol 105:15–22CrossRefGoogle Scholar
  11. 11.
    Wen T, Liu SY, Chen S, Liu LT, Yang C (2015) Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy. Trans Nonferrous Metals Soc China 25:397–404CrossRefGoogle Scholar
  12. 12.
    Kouadri A, Barrallier L (2011) Study of mechanical properties of AZ91 magnesium alloy welded by laser process taking into account the anisotropy microhardness and residual stresses by x-ray diffraction. Metall Mater Trans A 42:1815–1826CrossRefGoogle Scholar
  13. 13.
    Hosseini VA, Aashuri H, Kokabi AH (2013) Characterization of newly developed semisolid stir welding method for AZ91 magnesium alloy by using mg–25%Zn interlayer. Mater Sci Eng A 565:165–171Google Scholar
  14. 14.
    Liu WS, Long LP, Ma YZ, Wu L (2015) Microstructure evolution and mechanical properties of Mg/Al diffusion bonded joints. J Alloys Compd 643:34–39CrossRefGoogle Scholar
  15. 15.
    Sun M, Niknejad ST, Gao H, Wu L, Zhou Y (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339CrossRefGoogle Scholar
  16. 16.
    Yang TY, Wang KH, Zhang DK, Huang J (2017) Contact-reaction brazing of an AZ31 magnesium/3003 aluminum alloy using a silver-copper-zinc interlayer. J Mater Process Technol 249:531–537CrossRefGoogle Scholar
  17. 17.
    Xu C, Sheng GM, Wang H, Feng K, Yuan XJ (2016) Tungsten inert gas welding–brazing of AZ31B magnesium alloy to TC4 titanium alloy. J Mater Sci Technol 32:167–171CrossRefGoogle Scholar
  18. 18.
    Tan CW, Chen B, Meng SH, Zhang KP, Song XG, Zhou L, Feng JC (2016) Microstructure and mechanical properties of laser welded-brazed mg/Ti joints with AZ91 mg based filler. Mater Des 99:127–134CrossRefGoogle Scholar
  19. 19.
    Zhang ZQ, Tan CW, Zhao XY, Chen B, Song XG, Zhao HY (2018) Influence of cu coating thickness on interfacial reactions in laser welding brazing of mg to Ti. J Mater Process Technol 261:61–73CrossRefGoogle Scholar
  20. 20.
    Ren DX, Zhao KM, Pan M, Chang Y, Gang S, Zhao DW (2017) Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr Mater 126:58–62CrossRefGoogle Scholar
  21. 21.
    Song G, Li TT, Chen L (2018) The mechanical properties and interface bonding mechanism of immiscible Mg/steel by laser–tungsten inert gas welding with filler wire. Mater Sci Eng A 736:306–315CrossRefGoogle Scholar
  22. 22.
    Manladan SM, Yusof F, Ramesh S, Zhang Y, Luo Z, Ling Z (2017) Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J Mater Process Technol 250:45–54CrossRefGoogle Scholar
  23. 23.
    Ma L, Qiao P, Long W, He D, Li X (2012) Interface characteristics and mechanical properties of the induction brazed joint of magnesium alloy AZ31B with an Al-based filler metal. Mater Des 37:465–469CrossRefGoogle Scholar
  24. 24.
    Ma L, He D, Li X, Jiang J (2010) Microstructure and mechanical properties of magnesium alloy AZ31B brazed joint using a Zn-mg-Al filler metal. J Mater Sci Technol 26(8):743–746CrossRefGoogle Scholar
  25. 25.
    Watanabe T, Komatsu S, Oohara K (2005) Development of flue and filler metal for brazing magnesium alloy AZ31B. Weld J 84(3):37–40Google Scholar
  26. 26.
    Koleňák R, Kostolný I (2016) Influence of alloying elements in ZnAl5 based alloys on melting temperature, tensile strength and Vickers hardness. Appl Mech Mater 835:185–190CrossRefGoogle Scholar
  27. 27.
    Koleňák R, Kostolný I (2017) Effect of in addition on microstructure and properties of Zn-5Al solder. Key Eng Mater 737:107–113CrossRefGoogle Scholar
  28. 28.
    Liu L, Wu Z (2010) Microstructure and interfacial reactions of soldering magnesium alloy AZ31B. Mater Charact 61(1):13–18CrossRefGoogle Scholar
  29. 29.
    Wu Z, Song G (2010) Microstructure and properties of brazing joints of magnesium alloy AZ31B. Mater Res Innov 14(2):160–164CrossRefGoogle Scholar
  30. 30.
    Voisin T, Krywopusk NM, Mompiou F, Weihs TP (2017) Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing. Acta Mater 138:174–184CrossRefGoogle Scholar
  31. 31.
    Wang Z, Qu WQ, Zhuang HS (2016) Development of a mg-Al filler metal for brazing magnesium alloy AZ31B. Mater Lett 182:75–77CrossRefGoogle Scholar
  32. 32.
    Quan Y, Chen Z, Gong X, Yu Z (2008) Effects of heat input on microstructure and tensile properties of laser welded magnesium alloyAZ31. Mater Charact 59:1491–1497CrossRefGoogle Scholar
  33. 33.
    Braszczyńska-Malik KN (2009) Spherical shape of γ-Mg17Al12 precipitates in AZ91 magnesium alloy processed by equal-channel angular pressing. J Alloys Compd 487:263–268CrossRefGoogle Scholar
  34. 34.
    Masalski T, Okamoto H, Subramanian PR, Kaeprzake (1990) Binary alloy phase diagrams 2nd. ASM International Materials Park OHGoogle Scholar
  35. 35.
    Monas A, Shchyglo O, Kim SJ, Yim CD, Höche D, Steinbach I (2015) Divorced eutectic solidification of mg-Al alloys. JOM 67(8):1805–1811CrossRefGoogle Scholar
  36. 36.
    Ma L, He D, Li X, Jiang J, Wang L (2009) Phase constitution of soldering seam and mechanical properties of Zn matrix filler metal soldering magnesium alloy AZ31B joint. Rare Metal Mater Eng 38(3):210–214Google Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations