Modeling and simulation of weld solidification cracking part III
- 553 Downloads
Abstract
Several advanced alloy systems are susceptible to weld solidification cracking. One example is nickel-based superalloys, which are commonly used in critical applications such as aerospace engines and nuclear power plants. Weld solidification cracking is often expensive to repair, and if not repaired, can lead to catastrophic failure. This study, presented in three papers, presents an approach for simulating weld solidification cracking applicable to large-scale components. The results from finite element simulation of welding are post-processed and combined with models of metallurgy, as well as the behavior of the liquid film between the grain boundaries, in order to estimate the risk of crack initiation. The first paper in this study describes the crack criterion for crack initiation in a grain boundary liquid film. The second paper describes the model required to compute the pressure and thickness of the liquid film required in the crack criterion. The third and final paper describes the application of the model to Varestraint tests of alloy 718. The derived model can fairly well predict crack locations, crack orientations, and crack widths for the Varestraint tests. The importance of liquid permeability and strain localization for the predicted crack susceptibility in Varestraint tests is shown.
Keywords
Solidification cracking Hot cracking Varestraint testing Computational welding mechanics Alloy 7181 Introduction
Weld hot cracking can be difficult to avoid when welding of certain alloys such as nickel-based superalloys [1, 2]. The crack can be small and is therefore difficult to detect by non-destructive test methods. It can act as an initiation site for fatigue and corrosion cracking [3], which can be expensive to repair. The formation of the crack depends on the welding process, e.g., changes in weld heat input, welding speed, and external restraints from fixturing can all influence the crack susceptibility [1, 4]. Numerical simulation can be a powerful tool for reducing the risk of cracking. It can be used in the early stage of the design of a welding process to optimize process parameters such that the crack susceptibility can be minimized.
Weld hot cracking has been extensively studied for more than 60 years. Most of that work has been focused on experimental studies and not so much on numerical modeling. However, there are a number of interesting publications on numerical modeling of weld hot cracking. For example, Feng simulated a solidification centerline cracking in aluminum alloy 2024 [5]. Cracking was considered as a result of the competition between the material’s resistance to cracking and the mechanical driving force for cracking. The material’s resistance to cracking was given by a ductility curve in the solidification temperature interval. The ductility curve was constructed from a weldability test, while the mechanical driving force for cracking was given by the transverse mechanical strains on the weld centerline, obtained from a FE model of the welding process where the heat source was modeled by a radially symmetric Gaussian distribution. Cracking was assumed to occur if the mechanical strain in the solidification interval is larger than the ductility strain at the corresponding temperature.
Ploshikhin et al. simulated a solidification centerline cracking in aluminum alloy AA6056 [6]. They emphasized the importance of deformation localization in intergranular liquid films on the crack sensitivity. They could estimate up to 1000% of strain in a liquid film located at the weld centerline. Cracking was considered to occur when the deformation of the solidified alloy at the centerline exceeded a critical value. This critical value was determined by a weldability test. The deformation at the weld centerline was computed by a FE model where the elements at the centerline were given liquid properties in order to account for the strain localization in this region.
Drezet et al. [7] used the RGD criterion [8] to study the susceptibility for solidification centerline cracking in laser-welded aluminum alloys. The RDG criterion states that hot cracking forms if the local pressure in the liquid falls below a given cavitation pressure [7].
Bordreuil et al. used cellular automata together with the RDG criterion to study weld solidification cracking in aluminum alloy 6061 [9]. Finite element analysis was used to compute the macroscopic temperature and strain fields in a 3-mm thick plate with autogenous GTAW. The plate had a constant tensile load during the welding, in the direction of the weld. The temperature field from the FE model was used to construct a two-dimensional microstructure in the fusion zone with cellular automata. The liquid pressure in the interconnecting grain boundary liquid films (GBLFs), given by the cellular automata model, was computed with the RDG criterion. The plastic strain rate from the FE model, normal to the GBLF and multiplied by a localization factor that is proportional to the ratio of the grain diameter to the GBLF thickness, was used in the RDG criterion.
One of the most recent models for simulation of weld hot cracking is developed by Rajani et al. [10]. A three-dimensional granular model is used to simulate the interconnecting intergranular liquid flow in a microstructure with both columnar and equiaxed grains. The granular grains are generated from Voronoi diagrams and the intergranular liquid flow is modeled as a Poiseuille flow between parallel plates. The liquid flow is coupled with the mechanical deformation obtained from a FE model. The susceptibility for cracking is determined by Kou’s crack criterion [11].
In this study, a new model is proposed for simulating the resistance to weld solidification cracking (WSC). The model is developed to evaluate the crack susceptibility in the entire fusion zone, and therefore is not limited to centerline cracking, as is the case with some of the previously mentioned models. The main feature with this crack model is its pore-based crack criterion where a crack is assumed to form from a growing pore. Crack initiation is predicted to occur when the GBLF pressure goes below a fracture pressure, which corresponds to the pressure that is required to stabilize a rotational symmetric pore of a certain size in a GBLF with a given thickness, i.e., the pressure required to balance the surface tension of the pore. The derivation and more details of this criterion can be found in part I of this work [12]. A major challenge with this crack criterion is its depends on the GBLF pressure and the GBLF thickness at the location where it is evaluated. These quantities are determined from the macroscopic mechanical strains and temperature fields of the weld by a model presented in part II of this study [13]. In this paper, the third in the series, we evaluate the crack criterion from part I on Varestraint tests of the nickel-based superalloy alloy 718. In order to do so, a FE model of the Varestarint test is developed. The main challenge with this FE model is its material model for the mechanical behavior of the solidifying material, which is described in detail in this paper. Results from the Varestraint tests show that computed crack susceptible region, crack orientations, and crack widths are in fairly good agreement with experimental results.
2 Material and experimental procedure
The material and the Varestraint tests that were used to calibrate and evaluate the pore-based crack model, developed in parts I and II of this study, are described in this chapter.
2.1 Alloy 718
Chemical composition limits of alloy 718 (wt%). From Special Metals [14]
Ni | Fe | Cr | Nb | Mo | Ti | Al | Co | C | Mn | Si | P | S | B | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50.00 | Bal. | 17.00 | 4.75 | 2.80 | 0.65 | 0.20 | − | − | − | − | − | − | − | − |
55.00 | Bal. | 21.00 | 5.50 | 3.30 | 1.15 | 0.80 | 1.00 | 0.08 | 0.35 | 0.35 | 0.015 | 0.015 | 0.006 | 0.30 |
2.2 The Varestraint test
2.3 Experimental procedure
Varestarint tests with 0.4%, 0.8%, and 1.1% augmented strains were performed. All test specimens were 3.2-mm thick plates that were annealed before the testing. The dimensions of the plates were 60 × 150 mm and the dimensions of the support plates were 10 × 20 × 300 mm. The starting position of the weld electrode was 40 mm from the contact point between the plate and the die block. The bending was initiated when the weld electrode had travel 40 mm (i.e., at the location of the contact point between the plate and the die). The welding continued for 5 s after the initiation of the bending. Autogenous bead-on-plate TIG welding was used. The welding current was constant 70 A, with automatic voltage regulation. With an estimated voltage of 10 V, the welding power can be computed from the welding current and the welding voltage to 700 W. The welding speed was 1 mm/s and the stroke rate was 10 mm/s (i.e., the vertical bending speed). Furthermore, the electrode type was a WT 20 (ThO_{2}) with 2.4-mm diameter. The electrode tip angle was 50^{∘}. Negative polarity in the torch was used and the arc length was 2 mm. The shield gas was pure argon at a flow rate of 15 slpm. The diameter of the gas cup was 13 mm.
The figure shows results from tests with 0.8% and 1.1% augmented strains. No cracks could be found in the samples with 0.4% augmented strains. Even though no cracks could be found in the 0.4% tests in this study, the 0.4% augmented strain was considered to be the threshold strain for crack initiation. This is in agreement with Lingenfelter [18], who reported a small amount of cracking in Varestraint tests with 0.4% strain. Both Knock [19] and Quigley [20] reported a slightly higher threshold strain of 0.5% augmented strain for crack initiation.
3 Material model
In order to calibrate and evaluate the WSC model, which was developed in parts I and II of this study, on Varestraint tests of alloy 718, the temperature field and macroscopic strain fields of the Varestraint tests must be known. These fields are used to calculate the GBLF pressure (see part II [13]), which in turn is used to compute the crack initiation length (see part 1 [12]). In this study, the temperature and macroscopic mechanical strain fields were obtained from a finite element computational welding mechanics (CWM) model of the Varestraint test. Classical CWM models are normally used for computing deformations and residual stresses, which are not highly sensitive on the material properties at high temperatures. Therefore, often a cut-off temperature of about 70% of the homologous temperature, T_{m}, is used, above which the material properties are set to constant values [21]. Thus, the material models in classical CWM models cannot be used in the study of WSC because they cannot resolve the high-temperature mechanical behavior of the mushy zone where the WSCs are located. To accurately model the mechanical behavior of the mushy zone is very difficult. The solid in the mush is porous; thus, plastic deformations of the solid skeleton are not just dependent on the deviatoric stress state, as in J2 plasticity; it is also dependent on the hydrostatic pressure. This is especially true at lower fractions of solid. In order to capture behaviors like this, material models like Cam-Clay can be used [22]. A major drawback with these models is that they are very complicated to calibrate. Another problem with the mushy zone is that it is anisotropic when it contains columnar dendrites. To the knowledge of the authors, there has never been published any work on CWM models with material models that can handle these problems. However, Goldak et al. [23, 24] have presented a preliminary attempt to model stresses and strains close to the weld pool with isotropic J2 plasticity and different constitutive equations for different temperature intervals. A linear viscous model is used when the temperature is above 0.8 T_{m}. In the temperature range 0.5 T_{m} < T < 0.8 T_{m}, a rate-dependent plasticity model is used and for temperatures below 0.5 T_{m}, a rate-independent plasticity model is used. Inspired by Goldak’s model, we present in this chapter a material model for alloy 718 for estimating the mechanical and thermal behavior of the mushy zone.
3.1 Thermal properties
In this section, the thermal properties of the material model for alloy 718 are presented.
3.1.1 Solid fraction
From the plot, it can be seen that the predicted liquidus and solidus temperatures are approximately T_{l} = 1360 ^{∘}C and T_{s} = 1100 ^{∘}C, respectively.
3.1.2 Thermal conductivity
3.1.3 Specific heat capacity
3.1.4 Latent heat of fusion
3.2 Mechanical properties
3.2.1 Poisson’s ratio and Young’s modulus
The alloy 718 plates in this study were assumed to be isotropic. Thus, the elastic properties can be characterized by Young’s modulus and Poisson’s ratio. The latter has a smaller influence on plastic deformations and was set to a constant value of ν = 0.29 [14]. Young’s modulus of alloy 718 in solid phase has been measured by the Special Metals Corporation up to 1090 ^{∘}C by an ultrasonic method. The measured values are reported in [14].
3.2.2 Thermal expansion coefficient and solidification shrinkage factor
The volumetric expansion of alloy 718 has been measured by Blumm et al. [30] with an on-heating dilatometer test. This volumetric expansion can be transformed into a linear expansion by division with 3, which in turn can be differentiated with respect to the temperature to give the tangent thermal expansion coefficient. The material in the mushy zone is assumed to have the same thermal expansion as the solid skeleton of the mush, up to the coherent temperature. The solid skeleton in turn is assume to have the same thermal expansion as the full solid phase, which is determined by extrapolating the thermal expansion coefficient of the solid phase into the mushy zone. For higher temperatures than the coherent temperature, thermal expansion of the material is assumed to only cause liquid flows, and no straining of the solid skeleton of the mush. The thermal expansion coefficient was therefore set to zero for temperatures above the coherent temperature. Figure 4b shows the resulting thermal expansion coefficient in the temperature range 0 < T < 1600 ^{∘}C.
Blumm et al. [30] also measured the volumetric increase due to melting of alloy 718 with the dilatometer test. It was estimated to 3.1%. This value was used for the solidification shrinkage factor β in the grain boundary liquid pressure model in part II of this study.
3.2.3 Plasticity model
We approximate alloy 718 as an isotropic elasto-plastic material that is governed by von Mises plasticity with isotropic hardening. The region that contains liquid is approximated as a “soft” isotropic elasto-plastic solid. Four different constitutive models, valid in different temperature intervals, are used to model the mechanical behavior. These are as follows:
20 ≤ T ≤ 700 ^{∘}C
700^{∘} C < T ≤ 1050 ^{∘} C
Parameter values for the rate-independent yield stress model
i | A _{ i} | B _{ i} | ||
---|---|---|---|---|
1 | 231 | (MPa) | 3.31 | (−) |
2 | 2.20 | (−) | 909 | (^{∘}C) |
3 | 14.8 | (MPa) | 3.27 | (−) |
4 | 0.175 | (−) | 8.81 | (−) |
5 | 9.94 | (MPa) | 0.803 | (−) |
6 | 41.2 | (−) |
Parameters values for Chen’s flow stress model. From [31]
Q (J) | α (MPa^{− 1}) | A (1/s) | n (−) | B_{1} (−) | B_{2} (− B_{1}ln(1/s)) | ψ (−) | ξ (−) |
---|---|---|---|---|---|---|---|
430 × 10^{3} | 3.70 × 10^{− 3} | 6.26 × 10^{15} | 4.91 | 0.199 | − 9.24 | 1.20 | 0.699 |
The effective plastic strain, which act as state variable for hardening in the above model, was reset to zero for temperatures above 1100 ^{∘}C, in order to account for the fast recovery that occurs at high temperatures. Thus, effective plastic strains that occur above this temperature do not contribute to the hardening of the material.
1050 ^{∘}C < T ≤ T _{c}
For temperatures in the range 900 < T < 1050 ^{∘}C, which is not shown in the figure, the in situ and HST materials have nearly the same UTS values, despite their dissimilar microstructures [32].
In this study, the UTS data for the in situ and HST material was used to estimate the yield stress of the material in the FZ and the PMZ, respectively, at temperatures above 1050 ^{∘}C. The in situ solidified samples exhibited a dendritic microstructure. Even though the cooling rate was not as high as in welding, the resulting microstructure may be thought of as being a rough estimate of a microstructure found in the FZ of a weld, whereas the HST material can be thought of as a representation of the material in the PMZ, where grain boundary liquid films are formed, but not all of the original grains are completely melted.
3.2.4 T > T _{c}
3.2.5 Changing constitutive equations in time and in space
In the above, four different constitutive equations, valid in different temperature ranges, are used to model the mechanical behavior of alloy 718. Thus, it is necessary to change constitutive equations in time and space when the temperature field changes. That causes no problems in a FE model [24]. The initial conditions required for each time step of a FE model are the initial geometry, initial stress, initial strain, the boundary conditions of the previous and current time steps, and the constitutive equations in the interior of the time step; there is no need to define the constitutive equation at times earlier than the previous time step [24].
3.3 Additional material data
In addition to the macroscopic temperature and strain fields, the pressure model in part II and the crack criterion in part I require the liquid viscosity and the gas-liquid interfacial energy in order to be evaluated. The following data were used for these quantities.
3.3.1 Liquid viscosity
3.3.2 Gas-Liquid interface energy
To compute the crack initiation index (CII) in part I of this study, the factor \(\gamma _{gl}\cos \theta \) must be known, where γ_{gl} is the gas-liquid interface energy and 𝜃 is the contact angle (see part I). We assume that the solid phase is well wetted by the liquid phase, which makes 𝜃 small. Thus, \(\cos \theta \) can be approximated as 1.
4 The FE model of the Varestraint test
The Varestraint test was implemented in the software package MSC Marc as a thermo-mechanical finite element model. The various parts of this FE model are described below.
4.1 Heat source
4.2 Thermal boundary conditions
4.3 Implementation of material models
The material models in Section 3.2.3 were implemented into MSC Marc via the user subroutine WKSLP.
4.4 Varestraint setup
The bending of the test specimen was performed by a displacement boundary condition that controlled the movements of the rollers. The full bend times were 1.5, 3.0, and 3.6 s for the 0.4%, 0.8%, and 1.1% tests, respectively. All contacts had the segment-to-segment option. During the first 25 s, a fixed time step of 0.2 s was used. For the remaining time, a fixed time step of 0.05 s was used. The analysis was implicit. Relative convergence criteria, both residual force and displacement, were used with a tolerance of 1%. For the thermal field, a convergence tolerance of 0.1 ^{∘}C was used. The updated Lagrange formulation with large strains was used. The lumped capacity matrix option was used to avoid oscillations in the temperature field, as well as the constant temperature option, which ensures uniform thermal strains within an element. The “Adjust to Input” power option in MSC Marc was used to ensure a constant input of the weld heat flux. The Pardiso Direct Sparse matrix solver was used with 16-cores multi-threading. The total wall time of the simulation was about 12 h.
5 Procedure for determining crack initiation length
We estimate the crack susceptibility for WSC by a crack initiation length, CIL (see part I). This CIL corresponds to the length of a grain boundary, GB, where a crack initiation index, CII, has been larger than zero at the location of the terminal solidification. Note that the terminal solidification occurs at the intersection of the GBLF and solidus isotherm. It will therefore move with time because of the movement of the solidus isotherm. The CII is defined as the difference between a fracture pressure and the GBLF pressure, normalized by the atmospheric pressure. The fracture pressure is defined in part I as the pressure that is required to balance the surface tension of a rotational symmetric pore with a 50-μm radius. This pore size was considered as a pore that forms a severe defect. The fracture pressure depends on the GBLF thickness and the gas concentration in the GBLF, which is discussed in detail in part I. From the definitions of the CII and the fracture pressure, it is realized that if the CII is less than zero, the GBLF pressure must be larger than the fracture pressure, and therefore the GBLF pressure cannot stabilize a 500-μm pore, and we assume that there is no risk of cracking (see part I for more information).
For the part of a GBLF axis that is located between the solidus and liquidus isotherms, we consider a one-dimensional GBLF flow that always occurs in the direction of the GBLF axis (see part II). This flow is induced by deformations of the GBLF and by solidification shrinkage. We define the normal of the GBLF to be in the same direction as the largest mechanical strain rate perpendicular to the GBLF axis, \(\dot {\varepsilon }_{\perp ,{\max \nolimits }}^{m}\) (see part II). By doing so, the film normal will always be oriented such that the maximum deformation always occurs perpendicular to it. \(\dot {\varepsilon }_{\perp ,{\max \nolimits }}^{m}\) is determined from the FE model in chapter 4. It is computed from the mechanical strain fields, evaluated in sample points on the GBLF axis. The spacings between the sample points are approximately the same as the element size. The sample points move with the mesh as material points, and they contain data that are obtained by interpolating data from the nodes that belong to the same element that the sample point is located in. The sample points are constructed by the previous Python script that is used to trace out the GBLF axis. For every sample point, temperature, strains, and displacement data are stored for every time step. These data are stored in a text file that can be imported into Matlab for computing the GBLF pressure. Figure 8 b shows the sample points on the leftmost GBLF axis, which are shown as black crosses.
Once v^{∗}, h, and the flow direction (which is given by the direction of GBLF axis) are known a mass balance can be performed for a small volume element that extends across the thickness of the GBLF. This mass balance leads to a first-order time invariant ODE where the mean liquid velocity across the film, \(\bar v\), is the dependent variable while the coordinate, s, along the GBLF axis is the independent variable. \(\bar v\) can be substituted by a pressure gradient as follows. For the part of the GBLF that goes through regions with more than 0.1 fractions of liquid, we assume a strong interaction between the GBLF flow and the secondary dendrite arms. This flow is considered to be a porous flow that can be approximated by Darcy’s law. Darcy’s law states that \(\bar v\) is proportional to the pressure gradient with a proportionality factor that depends on the permeability of the porous medium (see part II). For the rest of the GBLF that goes through regions with less than 0.1 fractions of liquid, we assume that the flow interaction with the secondary dendrite arms is not so strong. In this case, the flow is assumed to be better approximated by a Poiseuille parallel plate flow, which gives that \(\bar v\) is proportional to the pressure gradient with a proportionality factor that depends on the GBLF thickness.
By substituting the expressions for the pressure gradients instead of \(\bar v\) into the mass balance equation, it transforms to a second-order ODE where now the dependent variable is the GBLF pressure. This ODE can further be transformed into a first-order separable ODE, which can be integrated numerically along the GBLF axis between the intersection points that the axis makes with the solidus isotherm and the liquidus isotherm for a given time. In order to do so, four different boundary conditions on the pressure are required. At the liquidus intersection, we assume that the pressure is the same as the atmospheric pressure. At the solidus intersection, we set a condition on the pressure gradient, which accounts for the solidification shrinkage flow at the end of the film (see part II). At the junction between the Darcy and Poiseuille flows, we enforce the pressure and \(\bar v\) (which can be expressed as a pressure gradient) to be continuous (see part II). The integrand in the numerical integration is evaluated with sample point data for the corresponding time. Note that there is no flow interaction between different GBLFs.
Finally, when the GBLF pressure and the GBLF thickness are known, the CIL can be computed as the total length of the GBLF axis where the CII has been larger than zero, at the location of the terminal solidification, as was stated previously. The CII is determined from the GBLF pressure and the fracture pressure, evaluated on the GBLF axis, via Eq. (37) in part I. The fracture pressure, in turn, is determined from Fig. 10 in part I by the computed GBLF thickness (at the location of the evaluation on the GBLF axis) and by a given fixed gas concentration. Because there is no flow interactions between different GBLFs, the CIL for a given GBLF can be determined without knowledge about other GBLFs.
6 Results and discussion
The WSC model was calibrated and evaluated on the Varestraint tests in chapter 2, implemented into the FE model in chapter 4. Because the bending strain in a Varestraint test is largest at the surface, the weld surface was assumed to be the most crack susceptible region of the test. Therefore, only the crack susceptibility at the weld surface was studied in this work, and all GBLF axes were constructed at the weld surface. However, in agreement with resent in situ experiment (see part I), we assume that the cracking occurs beneath the surface. And, even though the GBLF pressure is computed from the macroscopic temperature and mechanical strain fields at the surface of the weld (i.e., on the GBLF axes located on the surface), we consider the resulting GBLF flow to occur at a small distance under the surface, a distance large enough such that flow interactions with the surface can be neglected, and the GBLF pressure can be computed with the model in part II. Thus, e.g., the effect of the surface capillary on the flow is neglected. The crack susceptible region was covered with GBLF axes, separated approximately 1 mm from each other at the fusion line, in order to estimate the CIL over the whole crack susceptible region.
We assume that the hydrogen concentration in the weld pool is the same as what can be expected in a casting, i.e, about 2 ppm (see part I). Moreover, at the location of the terminal solidification, were cracking normally occur, we assume that this value has increased to 3.4 ppm due to segregation. It was computed from an equilibrium partition ratio of 0.589 (see part I). This value of the gas concentration was used when the fracture pressure is interpolated from Figure 10 in part I.
6.1 Calibration
The C_{1} parameter, which is associated with λ_{1}, was also calibrated to the 0.4% strain test. One of the experimental tests with 0.4% strain was cut transverse to the weld direction, approximately 30 mm from the weld start. The cut surface was then polished and etched, and λ_{1} was measured with a scanning electron microscope at a location 1 mm from the fusion boundary, and 0.1 mm below the weld surface. It was roughly measured to 20 μm. By inserting this value into Eq. 22, together with the values for G_{L} and ∂T/∂t, evaluated at the location of the measurement by the FE model, a C_{1} value of 1.00 × 10^{− 3} was obtained.
The last calibration parameter, C_{3}, was calibrated as follows. By altering the value of C_{3}, the amount of heat transfer between the test specimen and the die block can be adjusted. This will shift the location of the solidus isotherm, and therefore also the location of the crack susceptible region. The C_{3} parameter was calibrated so that the region of the computed CIL for the Varestraint test with 0.8% augmented strain was centered with the region where the surfaces cracks, found from four experimental tests with 0.8% strain, are located. These two regions are approximately centered when C_{3} = 1.28. The computed CIL region, together with the surface cracks from four tests with 0.4% strain, are shown in Fig. 12.
A C_{3} value of 1.28 corresponds to a 28% larger heat transfer coefficient, h_{cond} than predicted by the model in Karbasian et al. [39] (i.e., Eq. 19 with C_{3} = 1). There are a number of possible reasons for this. For example, the h_{cond} model in [39] is an imperial model for hot sheet forming and it is not known how well it works for alloy 718 at high temperatures. Also, for the welds in the experimental tests, there was a small bulge on the underside the weld. This small bulge could not be captured by the FE model. Thus, due to the bulge, the contact pressure at the weld underside may have been larger in the experiments than in the FE model. And therefore was more heat conducted between the test specimen and the die block for the experiments than for the FE model. This can explain why we had to increase h_{cond} in the FE model by 28%.
6.2 Evaluation
6.2.1 Temperature and fraction of liquid distribution
From Fig. 11a, it can be seen that the length of a GBLF that are in the temperature interval T_{s} < T < T_{l} is approximately 5 mm long. About 50% of this length is in a region with less than 0.2 fractions of liquid, as can be seen in Fig. 11b. Thus, a considerable part of a GBLF is in a vulnerable region where liquid flow may be difficult, which can increase the crack susceptibility.
6.2.2 Crack initiation length
6.2.3 Estimated crack width
6.3 Parameter sensitivity analysis
OFAT parameter sensitivity
CIL_{rel} (%) | ||||
---|---|---|---|---|
Parameter | Reference value | 0.4% strain | 0.8% strain | 1.1% strain |
C _{1} | 1.00 × 10^{− 3} | − 62.47 | − 4.40 | − 3.38 |
C _{2} | 40.00 | 36.72 | 4.01 | 4.03 |
\(\gamma _{\text {gl}} \cos \theta \) | 1.90 | − 48.43 | − 2.57 | − 2.28 |
β | 3.10 × 10^{− 2} | 0.29 | 0.06 | 0.06 |
K _{coeff} | 1.00 | − 54.55 | − 3.79 | − 2.95 |
μ _{coeff} | 1.00 | 28.64 | 2.93 | 3.05 |
\(l_{0,T_{c}}\) | 20.00 × 10^{− 6} | − 1.53 | − 0.45 | − 0.33 |
f _{ l,trans} | 0.10 | − 15.22 | − 1.26 | − 1.20 |
\(h_{{\min }}\) | 1.00 × 10^{− 8} | 0.00 | 0.00 | 0.00 |
From the table, it can be seen that one of the most influential factors on the CIL is the permeability. This can be seen on the effect of K_{coeff}, and even more on the effect of C_{1}. Note that C_{1} is proportional to λ_{1}, which in turn the permeability is proportional to in square (see Eq. (36) in part II). The C_{2} and \(\gamma _{\text {gl}} \cos \theta \) parameters are also very influential on the CIL. This reflects the importance of strain localization and surface tension. The sensitivity analysis also shows that viscosity is an important factor. Considerably less important is the solidification shrinkage factor, which only shows a weak influence on the CIL. This is because the liquid flow is significantly more dominated by the mechanical strain localization than the solidification shrinkage in the Varestraint test. Elements such as sulfur, phosphor, and boron are known to increase hot crack sensitivity. One reason for this is that these elements decrease the surface tension. A decrease in surface tension can lead to a large change in the CIL, as the above sensitivity analysis shows.
6.4 Limitations
6.4.1 Validation
The WSC model has been evaluated on Varestraint tests of alloy 718 with 0.8% and 1.1% augmented strains, and with constant welding speed and heat input. For these tests, the WSC model can quantify the cracking behavior fairly well. However, the conditions in a Varestraint test is quite different from the ones in a real weld, but we hope that the WSC model can be calibrated with a Varestraint test and that it then can be used for real weld situations where process parameters (e.g., welding speed and heat input), types of welding joints, and sheet thickness may vary. If the WSC model can handle this is still unknown, testing needs to be done in order to verify this.
The Varestraint test may not be the optimum weldability test for calibrating the crack model on sheet metals. The conditions in a Varestraint test may be rather different from the conditions in a real weld on a sheet metal. For example, the applied strain varies throughout the coupon thickness. Also, hinging is difficult to completely avoid when testing sheet metal with the Varestraint test. When welding sheet metals, the weld is normally fully penetrating. For the Varestraint test, the weld cannot be penetrating because that would destroy the die block. However, even though the weld is not penetrating, it can be difficult to not have a bulge on the underside of the weld. The test specimen can then ride on the bulge, which will alter the augmented strain and the heat transfer between the test specimen and the die block. The heat transfer between the test specimen and the die block is also difficult to model, and it requires a contact analysis, which makes the FE analysis much more computational heavy.
A better weldability test for calibrating and testing the WSC model on sheet metals is the controlled tensile weldability (CTW) test, developed at BAM Fedral Institute for Materials Research and Testing [3]. In this test, the test specimen is again a plate, but is now loaded in pure tension. The load can be applied prior to or during the welding, at a well controlled loading rate. The CTW test overcomes many of the problems associated with the Varestraint test. The loading is uniform throughout the thickness of the test plate, and fully penetrating welds can be used. The test is also more easy to model because there are no thermal or mechanical contacts between the test specimen and the support plates, and between the test specimen and the die block, as in the Varestraint test. The deformation of the test plate can simply be applied by a controlled displacement at one boundary of the plate.
A test similar to the CTW test is planned to be built so that the WSC model can be further tested. It can then be tested at conditions that resemble the conditions in real welds better than what is possible with the Varestraint test. With further testing, the ability of the WSC model to handle variations in welding speed and heat input could also be investigated.
6.4.2 One-dimensional flow
One of the major assumptions in the WSC model is that the direction of the GBLF flow always is in the growth direction and that there is no flow interaction between different GBLFs. This makes the WSC model computational cheap compared to, e.g., granular models. It just takes about one minute to compute the CIL for 10 GBLFs (not included the wall time of the FE model for obtaining the temperature and strain data). The approximation of 1D flow is assumed to be roughly valid when sheet metals of alloys with large solidification temperature intervals, and with fully penetrating welds are welded. In this case, long isolated GBLFs are assumed to exist due to the large solidification interval. And due to the fully penetrated welds, deformation and temperature variations in the thickness directions of the sheet metal are assumed to be small. Further, if we assume a state of plane stress in the sheet metal, GBLFs whose normals are perpendicular to the surface normal of the sheet will be mostly deformed. Because deformation and temperature do not vary much in the thickness direction of the sheet, the liquid flow in the thickness direction of these GBLFs are assumed to be small. Moreover, if we assume that the cracking occurs at a location close to the terminal solidification, then it can be assumed to occur in the part of the GBLF that is isolated from other GBLFs. Thus with the above conditions, the assumption of 1D flow is assumed to be roughly valid. However, if these conditions are not valid, this assumption becomes less valid, and more advanced models like granular models are required.
6.4.3 HAZ liquation cracking
HAZ liquation cracking could be found in the Varestraint tests in this study. But the WSC model cannot jet handle this type of cracking, and they were therefore ignored in this work. However, right now the WSC model is being extended to also cope with HAZ liquation cracking, and the result is planed to be published in the near future.
7 Conclusions
A computational welding mechanics model (CWM model) for Varestraint tests of alloy 718 has been developed. It has been used to calibrate and evaluate the weld solidification cracking model (WSC model) that was developed in parts I and II of this study. This WSC model computes a crack initiation length (CIL), which represents the length of a grain boundary where cracking may initiate, using data from the macroscopic temperature and the mechanical strain fields of the CWM model. Special emphasis was put on the material model of the CWM model in order to compute these fields in the high-temperature region where the cracking occurs.
The developed WSC model could estimate several WSC features of the Varestraint tests. For example, the location of the crack susceptible region, crack orientations, and crack widths, predicted by the WSC model, all agreed fairly well with experimental tests. A sensitivity analysis of the WSC model demonstrated that the permeability, the strain localization, and the surface tension are the parameters that influence the CIL most in the Varestraint tests, whereas solidification shrinkage had limited effect on the CIL.
Notes
Acknowledgments
The authors are thankful to Rosa Maria Pineda Huitron from the Material Science Department at Luleå Technical University for the help with evaluating the experimental Varestraint tests.
Funding information
Open access funding provided by Lulea University of Technology. This study is financially supported by the NFFP program, run by Swedish Armed Forces, Swedish Defence Material Administration, Swedish Governmental Agency for Innovation Systems, and GKN Aerospace (project no. 2013-01140 and 2017-04837).
Supplementary material
References
- 1.Lippold JC (2014) Welding metallurgy and weldability, Wiley, New YorkGoogle Scholar
- 2.Lippold JC, Kiser SD, DuPont JN (2011) Welding metallurgy and weldability of nickel-base alloys. Wiley, New YorkGoogle Scholar
- 3.Kannengiesser T, Boellinghaus T (2014) Hot cracking tests—an overview of present technologies and applications. Welding in the World 58(3):397–421CrossRefGoogle Scholar
- 4.Kou S (2003) Welding metallurgy. Wiley, New YorkGoogle Scholar
- 5.Feng Z (1994) A computational analysis of thermal and mechanical conditions for weld metal solidification cracking. WELDING IN THE WORLD-LONDON- 33:340–340Google Scholar
- 6.Ploshikhin V, Prikhodovsky A, Makhutin M, Ilin A, Zoch H-W (2005) Integrated mechanical-metallurgical approach to modeling of solidification cracking in welds. In: Hot cracking phenomena in welds. Springer, pp 223–244Google Scholar
- 7.Drezet J-M, Allehaux D (2008) Application of the rappaz-drezet-gremaud hot tearing criterion to welding of aluminium alloys. In: Hot cracking phenomena in welds II. Springer, pp 27–45Google Scholar
- 8.Rappaz M, Drezet J-M, Gremaud M (1999) A new hot-tearing criterion. Metallurgical and materials transactions A 30(2):449–455CrossRefGoogle Scholar
- 9.Bordreuil C, Niel A (2014) Modelling of hot cracking in welding with a cellular automaton combined with an intergranular fluid flow model. Comput Mater Sci 82:442–450CrossRefGoogle Scholar
- 10.Rajani HZ, Phillion A (2018) 3D multi-scale multi-physics modelling of hot cracking in welding. Mater Des 144:45–54CrossRefGoogle Scholar
- 11.Kou S (2015) A criterion for cracking during solidification. Acta Mater 88:366–374CrossRefGoogle Scholar
- 12.Draxler J, et al. (2019) Modeling and simulation of weld solidification cracking part I. Welding in the World: 1–14Google Scholar
- 13.Draxler J, et al. (2019) Modeling and simulation of weld solidification cracking part II. Welding in the World: 1–17Google Scholar
- 14.Metals S, et al. (2007) Inconel alloy 718, Publication Number SMC-045 Special Metals CorporationGoogle Scholar
- 15.Savage W, Lundin C (1965) The Varestraint test. Weld J 44:433–442Google Scholar
- 16.Andersson J (2011) Weldability of precipitation hardening superalloys–influence of microstructure. Chalmers University of TechnologyGoogle Scholar
- 17.Singh S (2018) Varestraint weldability testing of cast superalloysGoogle Scholar
- 18.Lingenfelter A (1989) Welding of inconel alloy 718: A historical overview. Superalloy 718:673–683CrossRefGoogle Scholar
- 19.Knock NO (2010) Characterization of Inconel 718: using the Gleeble and Varestraint testing methods to determine the weldability of Inconel 718Google Scholar
- 20.Quigley S (2011) A quantitative study of the weldability of Inconel 718 using Gleeble and Varestraint test methodsGoogle Scholar
- 21.Lindgren L-E (2014) Computational welding mechanics. ElsevierGoogle Scholar
- 22.Dantzig JA, Rappaz M (2016) Solidification: -Revised & Expanded EPFL pressGoogle Scholar
- 23.Goldak J, Breiguine V, Hughes N, Zhou J, Dai N (1997) Thermal stress analysis in solids near the liquid region in welds, Mathematical Modelling of Weld Phenomena 3. Institute of Materials, 1 Carlton House Terrace, London, SW 1 Y 5 DB, UK, 1997., pp 543–570Google Scholar
- 24.Goldak JA, Akhlaghi M (2006) Computational welding mechanics. Springer Science & Business MediaGoogle Scholar
- 25.Sames WJ, Unocic KA, Dehoff RR, Lolla T, Babu S S (2014) Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. J Mater Res 29(17):1920–1930CrossRefGoogle Scholar
- 26.Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead PublishingGoogle Scholar
- 27.Feng Z, Zacharia T, David S (1997) Thermal stress development in a nickel based superalloy during weldability test. Welding journal, 76(11)Google Scholar
- 28.Antonsson T, Fredriksson H (2005) The effect of cooling rate on the solidification of Inconel 718. Metall Mater Trans B 36(1):85–96CrossRefGoogle Scholar
- 29.Belashchenko DK, Mirzoev A, Ostrovski O (2011) Molecular dynamics modelling of liquid Fe-C alloys. High Temp Mater Processes 30(4-5):297–303CrossRefGoogle Scholar
- 30.Blumm J, Henderson JB (2000) Measurement of the volumetric expansion and bulk density of metals in the solid and molten regions. High Temp High Pressures 32(1):109–114CrossRefGoogle Scholar
- 31.Chen F, Liu J, Ou H, Lu B, Cui Z, Long H (2015) Flow characteristics and intrinsic workability of IN718 superalloy. Mater Sci Eng A 642:279–287CrossRefGoogle Scholar
- 32.Azadian S (2004) Aspects of precipitation in alloy Inconel 718, Ph.D. dissertation, Luleå tekniska universitetGoogle Scholar
- 33.Wang Y, Shao W, Zhen L, Yang L, Zhang X (2008) Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A 497(1-2):479–486CrossRefGoogle Scholar
- 34.Nowotnik A, Pedrak P, Sieniawski J, Goral M (2012) Mechanical properties of hot deformed Inconel 718 and x750. J Achiev Mater Manuf Eng 50(2):74–80Google Scholar
- 35.Cai D, Xiong L, Liu W, Sun G, Yao M (2009) Characterization of hot deformation behavior of a Ni-base superalloy using processing map. Mater Des 30(3):921–925CrossRefGoogle Scholar
- 36.Thomas A, El-Wahabi M, Cabrera J, Prado J (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177(1-3):469–472CrossRefGoogle Scholar
- 37.Li C, Thomas BG (2004) Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metallurgical and MAterials transactions B 35(6):1151–1172CrossRefGoogle Scholar
- 38.Saunders N, Guo Z, Li X, Miodownik A, Schille J-P (2004) Modelling the material properties and behaviour of Ni-based superalloys. Superalloys 2004:849–858CrossRefGoogle Scholar
- 39.Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118CrossRefGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.