Welding in the World

, Volume 63, Issue 1, pp 191–200 | Cite as

Transient liquid phase bonding of Inconel 617 superalloy: effect of filler metal type and bonding time

  • A. FarzadiEmail author
  • H. Esmaeili
  • S. E. Mirsalehi
Research Paper


Transient liquid phase (TLP) bonding has enormous potential to repair cracks in the gas turbine hot section parts that are made of Ni-based alloys. The experiments were carried out by BNi-1 and BNi-2 filler metals in a vacuum furnace at the bonding times of 45 and 300 min. The shear strength, microhardness, microstructure, and homogeneity of chemical composition during TLP bonding of Inconel 617 superalloy, which is the base metal, were evaluated. The shear strength of about 620 MPa was obtained using the BNi-1 filler metal. Hence, the BNi-1 filler metal and the bonding time of 300 min are recommended for repair of hot section components of a gas turbine. The gap size is an important parameter on the diffusion especially at the lower bonding times but the preliminary difference in the chemical composition may play an important role at the longer bonding times. The results show that the type of filler metal is an important parameter in this process.


TLP bonded joint BNi-1 and BNi-2 filler metals Shear strength Microhardness Chemical composition Homogenous 


  1. 1.
    Huntington (1979) Inconel alloy 617 (product information), Huntington alloys Inc, West VirginiaGoogle Scholar
  2. 2.
    Jalilian F, Jahazi M, Drew RAL (2006) Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal. Mat Sci Eng A-Struct 423(1–2):269–281Google Scholar
  3. 3.
    Special Metals (2005) Inconel alloy 617, Spec Met, Publication Number SMC-029, pp 1–12Google Scholar
  4. 4.
    Bohrenkämper G, Reiermann D, Höhne G, Lingner U (2004) Technology evolution of the proven gas turbine models V94. 2 and V84. 2 for new units and service retrofits, Siemens AG, pp 1–20Google Scholar
  5. 5.
    Technical purchasing specifications for gas turbine, Siemens Specification. TLV 9527 03/04 (4th Issue, November 1988)Google Scholar
  6. 6.
    Lippold JC (2015) Welding metallurgy and weldability. Wiley, New JerseyGoogle Scholar
  7. 7.
    Kou S (2003) Welding metallurgy, 2nd edn. Wiley, New JerseyGoogle Scholar
  8. 8.
    Diffusion Brazing (2005) ASM International, Metals handbook, vol 6. ASM International, OhioGoogle Scholar
  9. 9.
    Norouzi E, Atapour M, Shamanian M, Allafchian A (2016) Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint. Mater Des 99:543–551CrossRefGoogle Scholar
  10. 10.
    Esmaeili H, Mirsalehi SE, Farzadi A (2018) Vacuum TLP bonding of Inconel 617 superalloy using Ni-Cr-Si-Fe-B filler metal: metallurgical structure and mechanical properties. Vacuum 152:305–311CrossRefGoogle Scholar
  11. 11.
    Huang X, Miglietti W (2012) Wide gap braze repair of gas turbine blades and vanes—a review. J Eng Gas Turb Power 134(1):010801CrossRefGoogle Scholar
  12. 12.
    Jalilian F, Jahazi M, Drew RAL (2013) Microstructure evolution during transient liquid phase bonding of alloy 617. Metallogr Microstruct Anal 2(3):170–182CrossRefGoogle Scholar
  13. 13.
    Pouranvari M, Ekrami A, Kokabi AH (2011) Microstructure—properties relationship of TLP-bonded GTD-111 diffusion brazing of nickel based supper alloy part 4. M. Pouranvari, “Diffusion brazing of a nickel based superalloy. Part 4: effect of bonding temperature”. Assoc Metall Eng Serbia 17(4):165–173Google Scholar
  14. 14.
    Khorram A, Fakhraei O, Torkamany MJ (2017) Laser brazing of Inconel 718 and Inconel 600 with BNi-2 nickel-based filler metal. Int J Adv Manuf Tech 88(5–8):2075–2084CrossRefGoogle Scholar
  15. 15.
    Wu HLX, Chandel RS (2001) Evaluation of transient liquid phase bonding between nickel base superalloys. J Mater Sci 36(6):1539–1546CrossRefGoogle Scholar
  16. 16.
    Lal A, Iacocca RG, German RM (2000) Microstructural evolution during the supersolidus liquid phase sintering of nickel-based prealloyed powder mixtures. J Mater Sci 35(18):4507–4518CrossRefGoogle Scholar
  17. 17.
    Adebajo OJ, Ojo OA (2017) Enhanced corrosion resistance of a transient liquid phase bonded nickel-based superalloy. Metall Mater Trans A 48(1):26–33Google Scholar
  18. 18.
    Ma Q, Li Y, Wu N, Wang J (2013) Microstructure of vacuum-brazed joints of super-Ni/NiCr laminated composite using nickel-based amorphous filler metal. J Mater Eng Perform 22(6):1660–1665CrossRefGoogle Scholar
  19. 19.
    Pouranvari M, Ekrami A, Kokabi AH, Han HN (2013) Microstructural characteristics of a cast IN718 superalloy bonded by isothermal solidification. Met Mater Int 19(5):1091–1099CrossRefGoogle Scholar
  20. 20.
    Schwartz MM (2003) Brazing, 2nd edn. ASM International, OhioGoogle Scholar
  21. 21.
    Amorphous brazing foil (2018) Metglas® Inc. Accessed 16 Feb 2015
  22. 22.
    Esmaeili H, Mirsalehi SE, Farzadi A (2017) Effect of joining atmosphere in transient liquid phase bonding of Inconel 617 superalloy. Metall Mater Trans B 48(6):3259–3269CrossRefGoogle Scholar
  23. 23.
    Cook GO, Sorensen CD (2011) Overview of transient liquid phase and partial transient liquid phase bonding. J Mater Sci 46(16):5305–5323CrossRefGoogle Scholar
  24. 24.
    Tuah-Poku I, Dollar M, Massalski TB (1988) A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint. Metall Trans A 19(3):675–686CrossRefGoogle Scholar
  25. 25.
    Ojo OA, Richards N, Charturvedi MC (2004) Effect of gap size and process parameters on diffusion brazing of Inconel 738. Sci Technol Weld Join 9(3):209–220CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of Technology (AUT)TehranIran
  2. 2.Mapna Turbine Engineering and Manufacturing Co.TehranIran

Personalised recommendations