Advertisement

Welding in the World

, Volume 63, Issue 1, pp 23–31 | Cite as

Numerical investigations on the thermal efficiency in laser-assisted plasma arc welding

  • S. JäckelEmail author
  • M. Trautmann
  • M. Hertel
  • U. Füssel
  • D. Hipp
  • A. Mahrle
  • E. Beyer
Research Paper
  • 123 Downloads

Abstract

Numerical investigations on the thermal efficiency in laser-assisted plasma arc welding (LAPAW) have been carried out by the combination of a magneto-hydrodynamic (MHD) arc model and a smoothed-particle-hydrodynamics (SPH) model of the weld pool. The comparison of the calculated weld seam cross-sections gained from numerical simulation as well as experimental examinations shows a good agreement. By the use of the weld pool model, the sensitivity of different influencing variables was investigated. The analysis clearly reveals the major influence of the central heat flux density on the penetration profile and on the thermal efficiency of the process. The higher the heat flux of the laser beam and the higher the constriction of the heat flux profile of the arc, the higher the thermal efficiency of the process.

Keywords

Laser-enhanced plasma welding Hybrid laser arc welding Plasma welding Plasma Laser-arc interaction Hybrid Molten pool Simulating 

Notes

Funding information

The authors appreciate the financial support given by the German Research Foundation (DFG) within the project “Experimentelle und theoretische Analyse des Tiefschweißeffektes beim lasergestützten Plasmaschweißen”, Contract No. BE 1875/34-1 and FU 307/10-1.

Reference

  1. 1.
    Steen WM, Eboo M (1979) Arc-augmented laser welding. Met Constr 11(7):332–335Google Scholar
  2. 2.
    Steen WM (1980) Arc-augmented laser processing of materials. J Appl Phys 51(11):5636–5641CrossRefGoogle Scholar
  3. 3.
    Hu B, den Ouden G (2005) Laser induced stabilisation of the welding arc. Sci Technol Weld Join 10(1):76–81CrossRefGoogle Scholar
  4. 4.
    Stute U, Kling R, Hermsdorf J (2007) Interaction between electrical arc and Nd:YAG laser radiation. CIRP annals – manufacturing. Technology 56(1):197–200Google Scholar
  5. 5.
    Mahrle A, Rose S, Schnick M, Beyer E, Füssel U (2013) Stabilisation of plasma welding arcs by low power laser beams. Sci Technol Weld Join 18(4):323–328CrossRefGoogle Scholar
  6. 6.
    Schnick M, Rose S, Füssel U, Mahrle A, Demuth C, Beyer E (2013) Experimental and numerical investigations of the interaction between a plasma arc and a laser. Welding in the World 56(3):93–100Google Scholar
  7. 7.
    Cui H, Decker I, Pursch H, Ruge J, Wendelstorf J, Wohlfahrt H (1992) Laserinduziertes Fokussieren des WIG-Lichtbogens, Laser induced focusing of a TIG arc, DVS Bericht, Bd. 146. DVS-Verlag GmbH, Düsseldorf (in German)Google Scholar
  8. 8.
    Decker I, Wendelstorf J, Wohlfahrt H (1995) Laserstrahl-WIG-Schweißen von Aluminiumlegierungen, Laser-TIG-welding of aluminium alloys DVS-Bericht, Bd. 170. DVS-Verlag, Düsseldorf, pp 206–208 (in German)Google Scholar
  9. 9.
    Mahrle A, Schnick M, Rose S, Demuth C, Beyer E, Füssel U (2011) Process characteristics of fibre-laser-assisted plasma arc welding. J Phys D Appl Phys 44(34):345502–345513CrossRefGoogle Scholar
  10. 10.
    Hu B, den Ouden G (2005) Synergetic effects of hybrid laser/arc welding. Sci Technol Weld Join 10(4):427–431CrossRefGoogle Scholar
  11. 11.
    Mahrle A, Rose S, Schnick M, Beyer E, Füssel U (2013) Laser-assisted plasma arc welding of stainless steel. J Laser Appl 25(32006–1):32006–32008CrossRefGoogle Scholar
  12. 12.
    Mahrle A, Rose S, Beyer E, Füssel U (2014) Crucial role of beam spot position in laser assisted plasma arc welding. Sci Technol Weld Join 19(2):119–124CrossRefGoogle Scholar
  13. 13.
    Rose S, Mahrle A, Schnick M, Pinder T, Beyer E, Füssel U (2013) Plasma welding with a superimposed coaxial fiber laser beam. Welding in the World 57(6):857–865CrossRefGoogle Scholar
  14. 14.
    Lowke JJ, Kovitya P, Schmidt HP (1992) Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys 25:1600–1606CrossRefGoogle Scholar
  15. 15.
    Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics (Topical Review). J Phys D Appl Phys 40:R1–R23CrossRefGoogle Scholar
  16. 16.
    Schnick M, Fuessel U, Spille-Kohoff A (2010) Numerical investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (PAW), Doc. IIW-1997. Welding in the World 54(3):R87–R96CrossRefGoogle Scholar
  17. 17.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics - theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  18. 18.
    Ito M, Nishio Y, Izawa S, Fukunishi Y, Shigeta M (2015) Numerical simulation of joining process in a TIG welding system using incompressible SPH method. Quarterly Journal of the Japan Welding Society 33(2):34s–38sCrossRefGoogle Scholar
  19. 19.
    Trautmann M, Hertel M, Füssel U (2017) Numerical simulation of TIG weld pool dynamics using smoothed particle hydrodynamics. Int J Heat Mass Transf 115(Part B):842–853CrossRefGoogle Scholar
  20. 20.
    Murphy AB (2001) Thermal plasmas in gas mixtures (topical review). J Phys D Appl Phys 34(20):R151–R173CrossRefGoogle Scholar
  21. 21.
    Cho YT, Cho WI, Na SJ (2011) Numerical analysis of hybrid plasma generated by Nd:YAG laser and gas tungsten arc. Opt Laser Technol 49:711–720CrossRefGoogle Scholar
  22. 22.
    Kozakov R, Gött G, Uhrlandt D, Emde B, Hermsdorf J, Wesling V (2015) Study of laser radiation absorption in a TIG welding arc. Welding in the World 59:475–481CrossRefGoogle Scholar
  23. 23.
    Radaj D (1999) Schweißprozesssimulation: Grundlagen und Anwendung. Verlag für Schweißen und verwandte Verfahren DVS-Verlag, Düsseldorf (in German)Google Scholar
  24. 24.
    Matsumoto T, Misono T, Fujii H, Nogi K (2005) Surface tension of molten stainless steels under plasma conditions. J Mater Sci 40:2197–2200.  https://doi.org/10.1007/s10853-005-1932-9

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.Fraunhofer Institute of Material and Beam TechnologyDresdenGermany

Personalised recommendations