Advertisement

Welding in the World

, Volume 62, Issue 5, pp 905–912 | Cite as

Application of the stochastic finite element method in welding simulation

  • Zheng Li
  • Benjamin Launert
  • Hartmut Pasternak
Research Paper
  • 141 Downloads

Abstract

Due to the uncertain microscopic structure of the material, the strength of the material exhibits strong randomness. This randomness results in uncertain response of the structure in the sequentially coupled thermal-mechanical analysis by welding simulation. Because of the limitations of deterministic welding simulation, the stochastic finite element method with random field will be introduced into the welding simulation, so that the welded structure can be more accurately calculated in the stability and reliability structural analysis. Particularly, it is necessary to propose reasonable distributions of residual stress from welding simulations based on statistical and reliability theories. This paper is intended to implement the stochastic finite element method in the welding simulation using a general-purpose simulation program and to demonstrate the potential of the proposed approach. Furthermore, the statistical distribution function of the welding simulation response is obtained by maximum entropy fitting method. Then, a numerical example is presented by the proposed method.

Keywords

Stochastic finite element method Random field Maximum entropy fitting method Welding simulation Steel structures 

Nomenclature

δij

Kronecker symbol

θ

primitive randomness

λi

i-th eigenvalue

λn

Lagrange multiplier

μ(X)

mean value

ξi(θ)

i-th random variable

ρHH(X1, X2)

correlation function

σ2

standard deviation

φi(X)

i-th eigenfunction

ϕj(X)

j-th basic eigenfunction

(Ω, F, P)

probability space

Aij,Bij

K-L expansion matrices

CHH(X1, X2)

covariance function

E{ϕn(x)}

statistics moments

H

Entropy

H(X, θ)

random field

Je

mapping coefficient matrix

lD

correlation length

M

truncation order

X

position vector

References

  1. 1.
    Radaj D (2003) Welding residual stresses and distortion: calculation and measurement. Elsevier Science & Technology, AmsterdamGoogle Scholar
  2. 2.
    Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3:83–91CrossRefGoogle Scholar
  3. 3.
    Kamiński M, Świta P (2015) Structural stability and reliability of the underground steel tanks with the stochastic finite element method. Arch Civ Mech Eng 15:593–602CrossRefGoogle Scholar
  4. 4.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051CrossRefGoogle Scholar
  5. 5.
    Vanmarcke E (2010) Random fields: analysis and synthesis. World Scientific, SingaporeCrossRefGoogle Scholar
  6. 6.
    Shang S, Yun GJ (2013) Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem Anal Des 64:65–78CrossRefGoogle Scholar
  7. 7.
    Li Z, Pasternak H (2016) Development of a stochastic material model at constant stress distribution in steel construction, in: XVI Int Sci Conf VSU, Sofia, pp 193–198Google Scholar
  8. 8.
    Li Z, Pasternak H (2017) Reliability analysis of size effect on flexural members with stochastic finite element method. In: Bucher C, Ellingwood BR, Frangopol DM (eds) 12th Int. Conf. Struct. Saf. Reliab. TU-Verlag Vienna, Vienna, pp 778–787Google Scholar
  9. 9.
    Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRefGoogle Scholar
  10. 10.
    Sudret B, Der Kiureghian A (2000) Stochastic Finite Element Methods and Reliability: A State-of-the-Art ReportGoogle Scholar
  11. 11.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipe-The Art of Scientific Computing. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Vořechovský M, Novák D (2005) Simulation of random fields for stochastic finite element analysis, Icossar 2005:2545–2552Google Scholar
  13. 13.
    Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119:1136–1154CrossRefGoogle Scholar
  14. 14.
    Betz W, Papaioannou I, Straub D (2014) Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput Methods Appl Mech Eng 271:109–129CrossRefGoogle Scholar
  15. 15.
    Shi X, Teixeira AP, Zhang J, Soares CG (2014) Structural reliability analysis based on probabilistic response modelling using the maximum entropy method. Eng Struct 70:106–116CrossRefGoogle Scholar
  16. 16.
    Mohammad-Djafari A (1992) A Matlab program to calculate the maximum entropy distributions. Maximum Entropy and Bayesian Methods 221:221–233CrossRefGoogle Scholar
  17. 17.
    Pasternak H, Launert B, Kannengießer T, Rhode M (2018) Erhöhung der Tragfähigkeit geschweißter I-Profile aus hochfestem Baustahl durch verbesserte Ansätze zur Berücksichtigung von Eigenspannungen (in German, En.: enhancement of load capacity of welded high-strength I-shape sections using improved design modelGoogle Scholar
  18. 18.
    Voß O (2001) Untersuchung relevanter Einflußgrößen auf die numerische Schweißsimulation. Technische Universität Braunschweig, BraunschweigGoogle Scholar
  19. 19.
    Peil M, Wichers U (2004) Schweißen unter Betriebsbeanspruchung - Werkstoffkennwerte für einen S355 J2G3 unter Temperaturen bis 1200°C. Stahlbau 73:400–416CrossRefGoogle Scholar
  20. 20.
    JCSS (2001) Probabilistic Model Code, PART III - Resistance models, Static Properties of Structural SteelGoogle Scholar
  21. 21.
    Launert B, Rhode M, Kromm A, Pasternak H, Kannengiesser T (2017) Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders. Weld World 61:223–229CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations