Welding stress control in high-strength steel components using adapted heat control concepts

  • Dirk SchroepferEmail author
  • Arne Kromm
  • Thomas Schaupp
  • Thomas Kannengiesser
Research Paper


High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input, and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analyzed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behavior, welding, and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples.


Residual stresses GMA welding Restraint High-strength steels Process parameters 


Funding information

The studies were funded by the AiF-project projects IGF-Nr. 17267 N/FOSTA P922 and IGF-Nr. 17978 N/FOSTA P1011. Sincere thanks are given for this support and to the representing companies actively involved in the project board.


  1. 1.
    Guenther H-P (2005) Use and application of high-performance steels for steel structures. IABSE IVBH, ZürichGoogle Scholar
  2. 2.
    Hulka K, Kern A, Schriever U (2005) Application of niobium in quenched and tempered high-strength steels. Mater Sci Forum 500–501:519–526CrossRefGoogle Scholar
  3. 3.
    Schröter F (2003) Höherfeste Stähle für den Stahlbau—Auswahl und Anwendung. Bauingenieur 9:426–432Google Scholar
  4. 4.
    Gliner RE (2011) Welding of advanced high-strength sheet steels. Weld Int 25:389–396CrossRefGoogle Scholar
  5. 5.
    Hanus F, Schröter F, Schütz W (2005) State of art in the production and use of high-strength heavy plates for hydropower applications. In: High Strength Steel Hydropower Plants. pp 1–13Google Scholar
  6. 6.
    Uwer D, Hohne H (1992) Determination of suitable minimum preheating temperatures for the cold-crack-free welding of steels. Weld Res Abroad 38:31–35Google Scholar
  7. 7.
    EN 10025–6: Hot rolled products of structural steels—part 6: technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered conditions, 2018Google Scholar
  8. 8.
    Grong Ø (1997) Metallurgical modelling of welding. Institute of Materials, LondonGoogle Scholar
  9. 9.
    Masubuchi K (1993) Residual stresses and distortion. In: Davis JR, Ferjutz K, Wheaton ND, Woods MS (eds) ASM Handbook, Welding, Brazing Solder, vol 6. ASM International, Novelty, pp 1092–1102Google Scholar
  10. 10.
    Lu J (2002) Prestress engineering of structural material: a global design approach to the residual stress problem. In: Totten G, Howes T, Inoue M (eds) Handb. Residual Stress Deform. Steel. pp 11–26Google Scholar
  11. 11.
    DIN EN 1011–2: Welding—recommendation for welding of metallic materials—part 2: arc welding of ferritic steels, 2001Google Scholar
  12. 12.
    SEW 088: Weldable non-alloy and low-alloy steels—recommendations for processing, in particular for fusion welding, 2017Google Scholar
  13. 13.
    DIN-Fachbericht CEN ISO/TR 15608: Schweißen - Richtlinien für eine Gruppeneinteilung von metallischen Werkstoffen, 2005Google Scholar
  14. 14.
    Florian W Cold cracking in high strength weld metal—possibilities to calculate the necessary preheating temperature, IIW-Doc. IX-2006-01Google Scholar
  15. 15.
    Yurioka N, Suzuki H, Ohshita S, Saito S (1983) Determination of necessary preheating temperature in steel welding. Weld J 62:147–153Google Scholar
  16. 16.
    Schwenk C, Kannengiesser T, Rethmeier M (2009) Restraint conditions and welding residual stresses in self-restrained cold cracking tests. In: Trends Weld. Res. Proc. 8th Int. Conf. June, 2008, Callaw. Gard. Resort, Pine Mt. Georg. USA. ASM International, pp 766–773Google Scholar
  17. 17.
    Wongpanya P, Boellinghaus T, Lothongkum G (2008) Heat treatment procedures for hydrogen assisted cold cracking avoidance in S 1100 QL steel root welds. Weld World 52:671–678CrossRefGoogle Scholar
  18. 18.
    Wongpanya P, Boellinghaus T, Lothongkum G, Kannengiesser T (2008) Effects of preheating and Interpass temperature on stresses in S 1100 QL multi-pass butt-welds. Weld World 52:79–92CrossRefGoogle Scholar
  19. 19.
    Kannengiesser T, Lausch T, Kromm A (2011) Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions. Weld World 55:58–65CrossRefGoogle Scholar
  20. 20.
    Satoh K, Terai K, Yamada S et al (1975) Theoretical study on transient restraint stress in multi-pass welding. Trans Jpn Weld Soc 6:42–52Google Scholar
  21. 21.
    Wongpanya P, Boellinghaus T, Lothongkum G (2006) Effects of hydrogen removal heat treatment on residual stresses in high strength structural steel welds. Weld World 50:96–103Google Scholar
  22. 22.
    Drepper M (2009) Neues Bewertungskonzept zur Charakterisierung des Temperatur-Zeit-Verlaufes bei höchstfesten Feinkornbaustählen. RWTH, AachenGoogle Scholar
  23. 23.
    Heuser H, Jochum C, Stracke E (2007) Weld metal as strong as base metal?—Schweißzusatzwerkstoffe können/müssen nicht immer die Anforderungen der Grundwerkstoffe erfüllen. Mater Werkst 38:515–520CrossRefGoogle Scholar
  24. 24.
    Zerbst U, Ainsworth RA, Beier HT, Pisarski H, Zhang ZL, Nikbin K, Nitschke-Pagel T, Münstermann S, Kucharczyk P, Klingbeil D (2014) Review on fracture and crack propagation in weldments - a fracture mechanics perspective. Eng Fract Mech 132:200–276CrossRefGoogle Scholar
  25. 25.
    Schroepfer D, Kannengiesser T (2016) Stress build-up in HSLA steel welds due to material behaviour. J Mater Process Technol 227:49–58CrossRefGoogle Scholar
  26. 26.
    Dai H, Francis JA, Stone HJ, Bhadeshia HKDH, Withers PJ (2008) Characterizing phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons. Metall Mater Trans A 39:3070–3078CrossRefGoogle Scholar
  27. 27.
    Bhadeshia HKDH (2004) Developments in martensitic and bainitic steels: role of the shape deformation. Mater Sci Eng A 378:34–39CrossRefGoogle Scholar
  28. 28.
    Umekuni A, Masubuchi K (1997) Usefulness of undermatched weld for high-strength steels. Weld J 76:256–263Google Scholar
  29. 29.
    Lobanov LM, Poznyakov VD, Makhnenko OV (2013) Formation of cold cracks in welded joints from high-strength steels with 350–850 MPa yield strength. Pat Weld J (7) 7–12Google Scholar
  30. 30.
    Withers PJ, Turski M, Edwards L, Bouchard PJ, Buttle DJ (2008) Recent advances in residual stress measurement. Int J Press Vessel Pip 85:118–127. CrossRefGoogle Scholar
  31. 31.
    Withers PJ (2007) Residual stress and its role in failure. Rep Prog Phys 70:2211–2264. CrossRefGoogle Scholar
  32. 32.
    (2010) Eurocode 3: design of steel structures (EN 1993)Google Scholar
  33. 33.
    Nitschke-Pagel T, Wohlfahrt H (1991) The generation of residual stresses due to joining processes. In: Hauk V, Hougardy H, Macherauch E (eds) Residual Stress. - Meas. Calc. Eval. DGM Informationsgesellschaft mbH, Oberursel, ISBN: 3–88355–169-4, pp 121–133Google Scholar
  34. 34.
    Lachmann C, Krull P, Nitschke-Pagel T, Wohlfahrt H (1997) Investigations on the cold crack susceptibility of welded S960Q and Ck 45 due to residual stresses. In: Ericsson T, Oden M, Andersson A (eds) Fifth Int. Conf. Residual stress.—ICRS-5. Univ. Linköping, Sweden, pp 287–295Google Scholar
  35. 35.
    Satoh K, Matsui S (1968) Reaction stress and weld cracking under hindered contraction, IIW-Doc IX-574-68Google Scholar
  36. 36.
    Satoh K, Ueda Y, Kihara H (1973) Recent trends of research into restraint stresses and strains in relation to weld cracking. Weld World 11:133–156Google Scholar
  37. 37.
    Hirohata M, Itoh Y (2012) Effect of restraint on residual stress generated by butt-welding for thin steel plates. In: 9th Ger. Bridg. Symp. Kyoto, Japan. pp 1–6Google Scholar
  38. 38.
    Schasse R, Kannengiesser T, Kromm A, Mente T (2015) Residual stresses in repair welds of high-strength low-alloy steels. Weld World 59:757–765CrossRefGoogle Scholar
  39. 39.
    Kannengießer T (2000) Untersuchungen zur Entstehung schweißbedingter Spannungen und Verformungen bei variablen Einspannbedingungen im Bauteilschweißversuch. ShakerGoogle Scholar
  40. 40.
    Nitschke-Pagel T, Wohlfahrt H (2002) Residual stresses in welded joints—sources and consequences. Mater Sci Forum 404–407:215–226CrossRefGoogle Scholar
  41. 41.
    Withers PJ, Bhadeshia HKDH (2001) Residual stress. Part 2—nature and origins. Mater Sci Technol 17:366–375CrossRefGoogle Scholar
  42. 42.
    Schröpfer D (2017) Adaptierte Wärmeführung zur Optimierung schweißbedingter Beanspruchungen und Eigenschaften höherfester Verbindungen. OVGU, MagdeburgGoogle Scholar
  43. 43.
    Schroepfer D, Kromm A, Kannengiesser T (2015) Improving welding stresses by filler metal and heat control selection in component-related butt joints of high-strength steel. Weld World 59:455–464CrossRefGoogle Scholar
  44. 44.
    Schroepfer D, Kromm A, Kannengiesser T (2018) Load analyses of welded high-strength steel structures using image correlation and diffraction techniques. Weld World 62:459–469CrossRefGoogle Scholar
  45. 45.
    Alexandrov BT, Lippold JC (2010) In situ determination of phase transformations and structural changes during non-equilibrium material processing. In: Kannengiesser T, Babu SS, Komizo Y-I, Ramirez AJ (eds) In-situ Stud. with Photons, Neutrons Electrons Scatt. Springer, Berlin, pp 113–131CrossRefGoogle Scholar
  46. 46.
    EN ISO 16834: Welding consumables—wire electrodes, wires, rods and deposits for gas shielded arc welding of high strength steels—Classification, 2012Google Scholar
  47. 47.
    EN ISO 14341: Welding consumables—wire electrodes and weld deposits for gas shielded metal arc welding of non alloy and fine grain steels—Classification, 2011Google Scholar
  48. 48.
    EN ISO 15614-1: Specification and qualification of welding procedures for metallic materials—welding procedure test—part 1: arc and gas welding of steels and arc welding of nickel and nickel alloys, 2017Google Scholar
  49. 49.
    Zhang Z, Farrar RA (1995) An atlas of continuous cooling transformation (CCT) diagrams applicable to low carbon low alloy weld metals. Maney Publishing, LeedsGoogle Scholar
  50. 50.
    Steven W, Haynes AG (1956) The temperature of formation of martensite and bainite in low-alloy steel. J Iron Steel Inst 183:349–359Google Scholar
  51. 51.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels—microstructure and properties, 3. Elsevier Ltd., AmsterdamGoogle Scholar
  52. 52.
    Bhadeshia HKDH, Cerjak H (1997) Models for the elementary mechanical properties of steel welds. In: Cerjak H (ed) Math. Model. Weld Phenom. III. CRC Press, Boca Raton, pp 229–284Google Scholar
  53. 53.
    LePera FS (1979) Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 12:263–268CrossRefGoogle Scholar
  54. 54.
    Boellinghaus T, Kannengiesser T (2003) Effect of filler material selection and shrinkage restraint on stress strain build up in component welds. In: Proc. 6th Int. Conf. Trends Welding, April. 2002, Pine Mt. Georg. USA Res. Pine Mt. Georg. USA. ASM International, pp 906–911Google Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations