Welding in the World

, Volume 61, Issue 5, pp 1039–1047 | Cite as

Effect of rare earth metal on plasma properties in GMAW using CO2 shielding gas

  • Titinan Methong
  • Tasuku Yamaguchi
  • Masaya Shigeta
  • Manabu Tanaka
  • Rinsei Ikeda
  • Muneo Matsushita
  • Bovornchok Poopat
Research Paper
  • 235 Downloads

Abstract

Gas metal arc welding (GMAW) process, the effect of welding polarity and rare earth metal (REM) elements on physical properties was investigated through the observation of the plasma characteristics using the optical emission spectroscopy method which is suitable respectively to the O plasma region and the Fe plasma region. At the present experimental conditions, the MG-50 wire electrode and KC-500 wire electrode (REM-added electrode) were used for welding with 100% CO2 shielding gas. The results of the KC-500 wire electrode with DCEN polarity showed that the maximum temperature of the O plasma region was around 13,000–13,500 K. The maximum occurs at the region apart from the arc axis. The effect REM elements can cause high current density and electromagnetic pinch force at the tip of electrode. Meanwhile, the metal droplet diameter became smaller like spray transfer during arc with DCEN polarity.

Keywords (IIW Thesaurus)

Arc physics CO2 GMA welding Plasma Rare earth additions 

References

  1. 1.
    Kataoka T, Ikeda R (2007) Development of ultra-low spatter CO2 gas-shielded arc welding process J-STAR® welding, JFE Technical report. No. 10, 31–33Google Scholar
  2. 2.
    Fanara C, Vilarinho L (2004) Electrical characterization of atmospheric pressure arc plasmas. Eur Phys J D 28:241–251CrossRefGoogle Scholar
  3. 3.
    Dzierzega K, Zawadzki W (2006) Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics. Phys Rev E 74(026404):1–7Google Scholar
  4. 4.
    Griem HR (1997) Principles of plasma spectroscopy. Cambridge University, England, pp 281–283CrossRefGoogle Scholar
  5. 5.
    Olsen HN (1963) Measurement of argon transition probabilities using the thermal arc plasma as a radiation source. J Quant Spectrosc Radiat Transf 3:59–76CrossRefGoogle Scholar
  6. 6.
    Haidar J, Farmer AJD (1994) Large effect of cathode shape on plasma temperature in high-current free-burning arcs. J Phys D Appl Phys 27:555–560CrossRefGoogle Scholar
  7. 7.
    Boulos MI (1994) Thermal plasmas. Springer Science and Business Media, New York, pp 22–28CrossRefGoogle Scholar
  8. 8.
    Tanaka Y, Yamachi N, Matsumoto S, Kaneko S, Okabe S, Shibuya M (2008) Thermodynamic and transport properties of CO2, CO2–O2, and CO2–H2 mixtures at temperatures of 300 to 30,000 K and pressures of 0.1 to 10 MPa. Electrical Engineering in Japan 163(4):18–28CrossRefGoogle Scholar
  9. 9.
    Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490CrossRefGoogle Scholar
  10. 10.
    Kobe steel ltd, Kobelco welding handbook, Kobe steel ltd, welding business, p 71Google Scholar
  11. 11.
    Zielinska S, Pellerin S, Dzierzega K, Valensi F, Musiol K, Briand F (2010) Measurement of atomic stark parameters of many Mn I and Fe I spectral lines using GMAW process. J Phys D Appl Phys 43:1–9CrossRefGoogle Scholar
  12. 12.
    Pellerin S, Musiol K, Pokrzywka B, Chapelle J (1994) Investigation of a cathode region of an electric arc. J Phys D Appl Phys 27:552–528CrossRefGoogle Scholar
  13. 13.
    Lesnewich A (1955) Electrode activation for inert-gas-shielded metal-arc welding. Weld J 34(12):1167–1178Google Scholar
  14. 14.
    Guile AE (1971) Arc-electrode phenomena, proceeds from IEE. IEE Rev 118(9):1131–1154Google Scholar
  15. 15.
    Fridman A, Cho Y I (2007) Advances in heat transfer: transport phenomena in plasma, 1st edn. Academic Press, 440–442Google Scholar
  16. 16.
    Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15:279–307CrossRefGoogle Scholar
  17. 17.
    Schnick M, Fuessel U (2010) Metal vapour causes a central minimum in arc temperature in gas metal arc welding through increased radiative emission. J Phys D Appl Phys 43:022001CrossRefGoogle Scholar
  18. 18.
    Ozcelik S, Moore K (2003) Modeling, sensing and control of gas metal arc welding, Elsevier, 1st edn. 30–31Google Scholar
  19. 19.
    Scotti A, Ponomarev V, Lucas W (2012) A scientific application oriented classification for metal transfer modes in GMA welding. J Mater Process Technol 212:1406–1413CrossRefGoogle Scholar
  20. 20.
    Kim YS, Eagar TW (1993) Analysis of metal transfer in gas metal arc welding. Weld J 71:269–278Google Scholar
  21. 21.
    Cuiuri D, Norrish J and Cook C D (2003) Novel control techniques for CO2 shielded gas metal arc welding, Trends in Welding Research: Proceedings of the 6th International Conference, p 979–984Google Scholar
  22. 22.
    Matsuda F, Ushio M, Kumagai T (1988) Comparative study on fundamental arc characteristics with La-, Y-, Ce-oxide tungsten electrodes. Q J Jpn Weld Soc 6(2):199–204CrossRefGoogle Scholar
  23. 23.
    Tashiro S, Tanaka M (2012) Electrode and weld pool phenomena in arc welding. J. Plasma Fusion Res 88(7):383–388Google Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.Joining and Welding Research InstituteOsaka UniversityOsakaJapan
  2. 2.JFE Steel CorporationChuo-kuJapan
  3. 3.Department of Production Engineering, Faculty of EngineeringKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations