Advertisement

Welding in the World

, Volume 61, Issue 6, pp 1169–1179 | Cite as

Model-based description of arc length as a synergetic system parameter in pulsed GMAW

  • Uwe Reisgen
  • Samuel Mann
  • Philipp Lozano
  • Guido Buchholz
  • Konrad Willms
  • Birger Jaeschke
Research Paper
  • 132 Downloads

Abstract

Gas metal arc welding demonstrates a dynamic and inherently stochastic process behavior. Interdependencies of machine setup and process boundary conditions and the resulting process and weld product qualities are complex in nature, as the optimization of GMAW processes with regard to product quality demands expert knowledge. This work introduces a practical approach of mapping the arc length as a physical key process variable to the most influential pulsed GMAW setup parameters by means of generation and application of statistical process models. It further describes the necessary steps, including the determination of certain investigated variables, generating a statistical reasonable design of experiment and the actual model calculation and evaluation. Furthermore, field test evaluations of derived statistical models have been discussed, proving a successful statistical model generation process.

Keywords (IIW Thesaurus)

Arc welding Pulsed arc welding Statistical methods Process parameters 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation DFG for the support of the research work which has been carried out within the framework of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” and the participating partners from the industry for their support.

References

  1. 1.
    Puschner P.: Dynamisches Verhalten eines MIG-Schweißlichtbogens unter Betriebsbedingungen, Shaker, 1974Google Scholar
  2. 2.
    Reisgen U., K. Willms, G. Buchholz: Einsatz der Metamodellierung beim MSG-Schweißen im Rahmen der Arbeiten des Exzellenzclusters „Integrative Produktionstechnik für Hochlohnländer, Schweissen und Schneiden 1, 2009, pp. 30–34Google Scholar
  3. 3.
    Reisgen U, Beckers M, Buchholz G, Willms K, Schmitt R, Lose J (2010) Surrogate modelling in GMA pulsed arc welding. Weld cut 1:46–51Google Scholar
  4. 4.
    Bortz J., C. Schuster, Statistik für Human und Sozialwissenschaftler, Vol. 7, Springer, 2010Google Scholar
  5. 5.
    Lin, D.: A construction method for orthogonal Latin hypercube designs. In: Biometrika, 2006, pp. 279–288Google Scholar
  6. 6.
    Qiang D., V. Faber, M. Gunzburger: Centroidal Voronoi Tessellations: applications and algorithms, Society for Industrial and Applied Mathematics, SIAM Review, 1999, pp. 637–676Google Scholar
  7. 7.
    Romero V., J. Burkardt, M. Gunzburger, J. Peterson: Comparison of pure and “Latninized” centroidal Voronoi tessellation against various other statistical sampling methods, Journal of Reliability Engineering and System Safety, 2006, pp. 1266–1280Google Scholar
  8. 8.
    Merkblatt DVS 0926-3: Prozessparameter und Gerätetechnik für das Impuls-Lichtbogenschweißen, DVS Media, 2012Google Scholar
  9. 9.
    Norrish J., Advanced welding processes, Woodhead Publishing Limited, 2006Google Scholar
  10. 10.
    Praveen P., P. Yarlagadda, M. Kang: Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology, 2005, pp. 1113–1119Google Scholar
  11. 11.
    Ghosh P., L. Dorn, S. Kulkarni, F. Hofmann: Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of stainless steel, Journal of Materials Processing Technology, 2009, pp. 1262–1274Google Scholar
  12. 12.
    Ogilvie G., W. Brougham, G. Cheesman, D. Leske: Pulsed arc welding, European Patent 0 248 654 A2, 1987Google Scholar
  13. 13.
    Westerlund L.: Method for pulsed arc welding, European Patent 0 387 223 A1, 1990Google Scholar
  14. 14.
    Yamamoto H., W. Nishikawa, M. Nagasaka: Pulse arc welding method and device, European Patent 0 063 619 A1, 1981Google Scholar
  15. 15.
    Tessmar V., Koppe, K.: Die Vielfalt des MSG-Verfahrens gewinnbringend nutzen. Blech Inform 1, Carl Hanser Verlag, 2007Google Scholar
  16. 16.
    Matthes K., E. Richter: Schweißen von metallischen Konstruktionswerkstoffen. Fachbuchverlag Leipzig im Carl Hanser Verlag, 2002Google Scholar
  17. 17.
    Mokrov, O., U. Reisgen , A. Zabirov, V. Pavlyk, I. Krivtsun, V. Demchenko A. Lesnoi, I. Krikent , P. Poritsky: Modelling of electromagnetic processes in system “welding arc—evaporated anode.” Part I: model of the anode region, Science and Technology of Welding and Joining, 2010, pp. 457–462Google Scholar
  18. 18.
    Mokrov O., U. Reisgen, A. Zabirov, V. Pavlyk, I. Krivtsun, V. Demchenko, A. Lesnoi, I. Krikent, P. Poritsky: Modelling of electromagnetic processes in system “welding arc—evaporated anode.” Part II: model of the arc column and anode metal, Science and Technology of Welding and Joining, 2010, pp. 463–467Google Scholar
  19. 19.
    Ghosh P., L. Dorn, M. Hübner, V. Goyal: Arc characteristics and behaviour of metal transfer in pulsed GMA welding of aluminum alloy, Journal of Materials Processing Technology, 2007, pp. 163–175Google Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.Welding and Joining Institute (ISF)RWTH Aachen UniversityAachenGermany
  2. 2.Lorch SchweißtechnikAuenwaldGermany

Personalised recommendations