Advertisement

Welding in the World

, Volume 61, Issue 4, pp 789–799 | Cite as

HFMI: understanding the mechanisms for fatigue life improvement and repair of welded structures

  • Fabien LefebvreEmail author
  • Catherine Peyrac
  • G. Elbel
  • C. Revilla-Gomez
  • Catherine Verdu
  • Jean-Yves Buffière
Research Paper

Abstract

Fatigue resistance of high-frequency mechanical impact (HFMI) treatment is investigated on high-strength welded steel S690. Cyclic four-point bending tests are performed on butt weld samples and HFMI samples with different conditions of treatment with or without stress-relieving heat treatment. Microstructural characterisations with electron backscattering diffraction observations and residual stress analyses are presented. The main objective of this paper is to reveal and identify the parameters (residual stresses, geometry, strain hardening, etc.) which have an effect during the HFMI operation and to understand the phenomena involved during fatigue stressing. The optimisation of the geometry of the fatigue specimen allowed to repetitively obtain failures in the treated areas, thereby showing the relationship between the geometry, the strain hardening, the residual stresses and the fatigue strength. The main conclusions of this paper showed that HFMI treatment improves the fatigue performance of welded joints (in keeping with the International Institute of Welding results). The residual compressive stresses are prominent. The microstructure does not seem to have any effect, despite the nanostructured layer. The geometry is of secondary importance despite a significant change in the local geometry. HFMI treatment is also presented as retrofitting treatment.

Keywords (IIW Thesaurus)

Welded joints Fatigue improvement Residual stresses Peening Microstructure 

Notes

Acknowledgements

Authors would like to thank the contribution of the members of Cetim committee for their active participations.

References

  1. 1.
    Harrison JD (1966) Further techniques for improving the fatigue strength of welded joints. Br Weld J 13:642–647Google Scholar
  2. 2.
    G. Le Quilliec (2011) Application du martelage à haute fréquence à l’optimisation de la maintenance des ouvrages et des structures soudées. PhD thesis, École Centrale de Nantes - École Doctorale Sciences Pour l’Ingénieur Géosciences ArchitectureGoogle Scholar
  3. 3.
    Tehrani Yekta R, Ghahremani K, Walbridge S (2013) Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds. Int J Fatigue 55:245–256CrossRefGoogle Scholar
  4. 4.
    Harati E, Svensson L-E, Karlsson L, Widmark M (2016) Effect of high frequency mechanical impact treatment on fatigue strength of welded 1300 MPa yield strength steel. Int J Fatigue 92(Part 1):96–106CrossRefGoogle Scholar
  5. 5.
    K. Yamada, T. Kakiichi, T. Ishikawa (2009) Extending fatigue life of cracked welded joint by impact crack closure retrofit treatment, IIW Doc. XIII-2289r1-09, 2009, Fatigue DesignGoogle Scholar
  6. 6.
    Y. Kudryavtsev, J. Kleiman, A. Lugovskoy, L. Lobanov, V. Knysh, O. Voitenko (2005) Rehabilitation and repair of welded elements and structures by ultrasonic peening, IIW Doc. XIII-2076-05Google Scholar
  7. 7.
    ISO 5817 Welding — Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded)—quality levels for imperfectionsGoogle Scholar
  8. 8.
    P. Gerster, F. Schäfers and M. Leitner (2013) Pneumatic impact treatment (PIT)—application and quality assurance. IIW Document XIII-WG2-138-13Google Scholar
  9. 9.
    P. Lefevre (2016) White paper, fatigue life improvement of welded structures by ultrasonic needle peening, SonatsGoogle Scholar
  10. 10.
    EN 15305 standard: Non-destructive testing. Test method for residual stress analysis by X-ray diffractionGoogle Scholar
  11. 11.
    M.F. Cipière, H.P. Lieurade, J.L. Lebrun (1989) Evaluation de l’endommagement par diffraction de rayons X. Rapport IRSID, marsGoogle Scholar
  12. 12.
    P. Mabelly, P. Hadmar, M. Desvignes, J.M. Sprauel (1996) Inflence des hétérogéneïtés de déformation élastique sur l’élargissement des pics de diffractionX. J. Phys III, Vol. 6Google Scholar
  13. 13.
    Etude de l’influence de l’intégrité de surface en tournage de l’acier 15-5PH sur la tenue en fatigue en flexion rotative (2014) PhD thesis, Vincent ChomienneGoogle Scholar
  14. 14.
    G. B. Marquis, Eeva Mikkola, Halid Can Yildirim and Zuheir Barsoum (2013) Fatigue strength improvement of steel structures by HFMI: proposed fatigue assessment guidelines. IIW Doc. XIII-2452-13Google Scholar
  15. 15.
    G. B. Marquis, Zuheir Barsoum (2013) A guideline for fatigue strength improvement of high-strength steel welded structures using high frequency mechanical impact treatment. Fatigue Design, Elsevier ProcediaGoogle Scholar
  16. 16.
    Hobbacher A (2009) IIW recommendations for fatigue design of welded joints and components, WRC bulletin 520. The Welding Research Council, New YorkGoogle Scholar
  17. 17.
    Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scr Mater 49:665–680CrossRefGoogle Scholar
  18. 18.
    Revilla-Gomez C, Buffiere J-Y, Verdu C, Peyrac C, Daflon L, Lefebvre F (2013) Assessment of the surface hardening effects from hammer peening on high strength steel. Procedia Engineering 66:150–160CrossRefGoogle Scholar
  19. 19.
    M. Leitner, M. Stoschka, W. Eichlseder (2012) Contribution to the fatigue enhancement of thin walled high-strength steels using HFPT, IIW Doc, WG2Google Scholar
  20. 20.
    C. Peyrac, C. Combe, F. Lefebvre Fatigue strength improvement of high strength welded steel structures by hammer peening treatment, IIW-DOC XIII-2576-15Google Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.CETIMSenlisFrance
  2. 2.INSA-MateisLyonFrance
  3. 3.Liebherr-France SASColmarFrance

Personalised recommendations