Welding in the World

, Volume 60, Issue 3, pp 415–457 | Cite as

Trend and innovations in laser beam welding of wrought aluminum alloys

  • Ojo Olatunji Oladimeji
  • Emel TabanEmail author
Research Paper


The drive toward fulfilling weight reduction obligation, superior weld quality requirement, and industrial manufacturing rationale has sprung up considerable interest in applying laser welding technology on aluminum alloys. Nevertheless, porosity, solidification cracking, and surface reflectivity have been the major banes of laser welding of aluminum alloys. However, literature has shown that positive efforts have been accomplished in reducing these fundamental concerns by adopting careful selection of welding procedure, modification of pure laser welding techniques, and the use of appropriate filler metal. Albeit, there is still upbeat progression on the application and improvement of laser welding of aluminum alloys. At present, laser welding technology has the potential of fulfilling industrial requirements in joining lightweight aluminum alloys because of its capacity for automation and intrinsic flexibility, precision and repeatability, low general heat input, high welding speed, and low weld distortion. As a result, this report examines the available and current status of laser technologies in welding aluminum alloys. It further categorizes the laser technologies of aluminum alloys into four assemblages, namely, pure or single-beam laser welding, laser-arc hybrid welding, tailored heat source laser welding, and other innovative laser welding technologies, respectively. Mechanical, corrosion, and microstructural behaviors of laser welded aluminum alloys are also studied. Conversely, some of the research areas that need further investigations are proposed. Corrosion behavioral properties, influence of micropores on fatigue and quasi-static tensile strength, and toughness characterization of laser welded aluminum alloys are insufficient in literature.

Keywords (IIW Thesaurus)

Laser welding Aluminum alloys Reviews Weldability Hybrid laser-arc welding Microstructure Porosity Solidification cracking Mechanical properties Corrosion 



Authors would like to acknowledge Prof. Dr. Erdinc Kaluc for valuable discussions and cooperation.


  1. 1.
    You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci Technol Weld Join 19(3):181–201. doi: 10.1179/1362171813y.0000000180 CrossRefGoogle Scholar
  2. 2.
    Gene Mathers: The welding of aluminium and its alloys, Woodhead Publishing Limited (2002) ISBN 1 85573 567 9, Pg. 1–31, DOI:  10.1533/9781855737631
  3. 3.
    Ion JC (2000) Laser beam welding of wrought aluminum alloys. Sci Technol Weld Join 5(5):265–275. doi: 10.1179/136217100101538308 CrossRefGoogle Scholar
  4. 4.
    Coniglio N, Patry M (2013) Measuring laser weldability of aluminum alloys using controlled restraint weldability test. Sci Technol Weld Join 18(7):573–580. doi: 10.1179/1362171813y.0000000137 CrossRefGoogle Scholar
  5. 5.
    von Witzendorff P, Hermsdorf J, Kaierle S, Suttmann O, Overmeyer L (2015) Science and technology of welding and joining. Double pulse laser welding of 6082 aluminum alloys, 2015, Vol. 20, No. 1, pp. 42–47; doi:  10.1179/1362171814Y.0000000255
  6. 6.
    Matsunawa A (2001) Problems and solutions in deep penetration laser welding. Sci Technol Weld Join 6(6):351–354. doi: 10.1179/stw.2001.6.6.351 CrossRefGoogle Scholar
  7. 7.
    Verhaeghe G and Hilton P (2004) Laser Welding of Low-Porosity Aerospace Aluminum Alloy, 34th International MATADOR Conference, 7th - 9th July 2004, UMIST, Manchester, UK, pp. 241 to 246; doi:  10.1007/978-1-4471-0647-0_36
  8. 8.
    Page CJ, Devermann T, Biffin J, Blundell N (2002) Plasma augmented laser welding and its applications. Sci Technol Weld Join 7(1):1–10. doi: 10.1179/136217102225001313 CrossRefGoogle Scholar
  9. 9.
    Cai C, Peng GC, Li LQ, Chen YB, Qiao L (2014) Comparative study on laser welding characteristics of aluminum alloy under atmospheric and sub atmospheric pressures. Sci Technol Weld Join 19(7):547–553. doi: 10.1179/1362171814y.0000000223 CrossRefGoogle Scholar
  10. 10.
    TWI: URL: accessed on 10th May, 2015
  11. 11.
    Sanchez-Amaya JM, Delgado T, De Damborenea JJ, Lopez V, Botana FJ (2009) Laser welding of AA 5083 samples by high power diode laser. Sci Technol Weld Join 14(1):78–86. doi: 10.1179/136217108x347629 CrossRefGoogle Scholar
  12. 12.
    Sheikhi M, Malek Ghaini F, Torkamany MJ, Sabbaghzadeh J (2009) Characterization of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminum alloy. Sci Technol Weld Join 14(2):161–165. doi: 10.1179/136217108x386554 CrossRefGoogle Scholar
  13. 13.
    Norman AF, Ducharme R, Mackwood A, Kapadia P, Prangnell PB (1998) Application of thermal modeling to laser beam welding of aluminum alloys. Sci Technol Weld Join 3(5):260–266. doi: 10.1179/stw.1998.3.5.260 CrossRefGoogle Scholar
  14. 14.
    Moore PL, Howse DS, Wallach ER (2004) Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels, 2004, Vol. 9, No. 4, pp. 314–322; DOI:  10.1179/136217104225021652
  15. 15.
    Long X, Khanna SK (2005) Residual stresses in spot welded new generation aluminum alloys Part B—finite element simulation of residual stresses in a spot weld in 5754 aluminum alloy. Sci Technol Weld Join 10(1):88–94. doi: 10.1179/174329305x29483 CrossRefGoogle Scholar
  16. 16.
    Ramasamy S, Albright CE (2001) CO2 and Nd–YAG laser beam welding of 5754–O aluminum alloy for automotive applications, 2001, Vol. 6, No. 3, pp. 182–190 doi:  10.1179/136217101101538730
  17. 17.
    Rowe J (2012) Advanced materials in automotive engineering, Woodhead Publishing Limited, ISBN 978-1-84569-561-3 Pg. 6–14, doi:  10.1533/9780857095466
  18. 18.
    Hu B, Richardson IM (2006) Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminum alloys. Mater Sci Eng A 429(2006):287–294. doi: 10.1016/j.msea.2006.05.040 CrossRefGoogle Scholar
  19. 19.
    Babu SS, David SA, Vitek JM, Reed RW (2001) Solidification and microstructure modeling of welds in aluminum alloys 5754 and 611. Sci Technol Weld Join 6(1):31–40. doi: 10.1179/136217101101538514 CrossRefGoogle Scholar
  20. 20.
    Deutsch MG, Punkari A, Weckman DC, Kerr HW (2003) Weldability of 1.6 mm thick aluminum alloy 5182 sheet by single and dual beam Nd:YAG laser welding. Sci Technol Weld Join 8(4):246–256. doi: 10.1179/136217103225005499 CrossRefGoogle Scholar
  21. 21.
    Sudhakar I, Madhu V, Madhusudhan Reddy G, Srinivasa Rao K (2015) Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing. Def Technol 11(1):10–17. doi: 10.1016/j.dt.2014.08.003 CrossRefGoogle Scholar
  22. 22.
    Sekhar NC, Bjorneklett B (2002) Laser welding of complex aluminum structures. Sci Technol Weld Joining 7(1):19–25. doi: 10.1179/136217102225002024 CrossRefGoogle Scholar
  23. 23.
    Haferkamp H, Bunte J, Herzog D, Ostendorf A (2004) Laser based welding of cellular aluminum. Sci Technol Weld Join 9(1):65–71. doi: 10.1179/136217104225017170 CrossRefGoogle Scholar
  24. 24.
    AlShaer AW, Li L, Mistry A (2014) The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture. Optics Laser Technol 64(2014):162–171. doi: 10.1016/j.optlastec.2014.05.010 CrossRefGoogle Scholar
  25. 25.
    Cam G, Ventzke V, Dos Santos JF, Kocak M, Jennequin G, Gonthier-Maurin P (1999) Characterization of electron beam welded aluminum alloys. Sci Technol Weld Join 4(5):317–323. doi: 10.1179/136217199101537941 CrossRefGoogle Scholar
  26. 26.
    Saida K, Song W, Nishimoto K (2005) Diode laser brazing of aluminum alloy to steels with aluminum filler metal. Sci Technol Weld Join 10(2):227–235. doi: 10.1179/174329305x37060 CrossRefGoogle Scholar
  27. 27.
    Punkari A, Weckman DC, Kerr HW (2003) Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys. Sci Technol Weld Join 8(4):269–281. doi: 10.1179/136217103225005516 CrossRefGoogle Scholar
  28. 28.
    Kwon Y, Weckman DC (2008) Double sided arc welding of AA5182 aluminum alloy sheet. Sci Technol Weld Join 13(6):485–495. doi: 10.1179/174329308x271715 CrossRefGoogle Scholar
  29. 29.
    Olsen F O (2009) Hybrid laser–arc welding, Woodhead Publishing Limited, pg. 1–44, 216–260; ISBN 978-1-84569-370-1; doi:  10.1533/9781845696528
  30. 30.
    Katayama S (2013) Handbook of laser welding technologies, Woodhead Publishing Limited, pg. 3–120; ISBN 978-0-85709-264-9 doi:  10.1533/9780857098771
  31. 31.
    Kah P, Jibril A, Martikainen J, Suoranta R (2012) Process possibility of welding thin aluminum alloys. Int J Mech Mater Eng (IJMME) 7(3):232–242Google Scholar
  32. 32.
    Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum–lithium alloys. J Manuf Process 16(2014):166–175. doi: 10.1016/j.jmapro.2013.10.005 CrossRefGoogle Scholar
  33. 33.
    Bentor Yinon: Periodic table of aluminum; URL: accessed on 28th May, 2015
  34. 34.
    Udomphol T (2007) Aluminium and its alloys, Lecture 2 by Tapany Udomphol, Suranaree University of TechnologyGoogle Scholar
  35. 35.
    Cobden R, Banbury A: Aluminium: Physical Properties, Characteristics and Alloys, Training in aluminium application technologies (TALAT), Basic Level-Lecture 1501, prepared by Ron Cobden, Alcan, Banbury, pg. 1–60; URL:
  36. 36.
    Hatch J E (1984) Aluminium Properties and Physical Metallurgy edited by John E. Hatch, ASM International Pg. 1–57Google Scholar
  37. 37.
    Enz J, Riekehr S, Ventzke V, Kashaev N (2012) Influence of the local chemical composition on the mechanical properties of laser beam welded Al-Li alloys. Phys Procedia 39(2012):51–58. doi: 10.1016/j.phpro.2012.10.013 CrossRefGoogle Scholar
  38. 38.
    Kim HR, Park YW, Lee KY (2008) Application of grey relational analysis to determine welding parameters for Nd:YAG laser GMA hybrid welding of aluminum alloy. Sci Technol Weld Join 13(4):312–317. doi: 10.1179/174329307x249423 CrossRefGoogle Scholar
  39. 39.
    Vargel C: Corrosion of Aluminium translated by Dr. Martin P. Schmidt (2004) Elsevier Ltd, ISBN: 0 08 044495 4 Pg. 1–75, doi:  10.1016/b978-008044495-6/50007-0
  40. 40.
    Kim YP, Alam N, Bang HS, Bang HS (2006) Observation of hybrid (cw Nd:YAG laser + MIG) welding phenomenon in AA 5083 butt joints with different gap condition. Sci Technol Weld Join 11(3):295–307. doi: 10.1179/174329306x107674 CrossRefGoogle Scholar
  41. 41.
    Kawahito Y, Katayama S (2006) In-process monitoring and adaptive control during pulsed yag laser spot welding of aluminum alloy thin sheets. JLMN-J Laser Micro/Nanoengineering 1(1):33–38. doi: 10.2961/jlmn.2006.01.0007 CrossRefGoogle Scholar
  42. 42.
    De Bono P (2011) QCOALA- Quality Control of Aluminum Laser-welded Assemblies, PDB/gdp/068DR.11, URL:, accessed 30th May, 2015
  43. 43.
    Wanjara P, Brochu M (2010) Characterization of electron beam welded AA2024. Vacuum 85:268–282. doi: 10.1016/j.vacuum.2010.06.007 CrossRefGoogle Scholar
  44. 44.
    Westermann I, Pedersen KO, Furu T, Børvik T, Hopperstad OS (2014) Effects of particles and solutes on strength, work-hardening and ductile fracture of aluminum alloys. Mech Mater 79(2014):58–72. doi: 10.1016/j.mechmat.2014.08.006 CrossRefGoogle Scholar
  45. 45.
    Zhao P-Z, Liu J, Chi Z-D (2014) Effect of Si content on laser welding performance of Al − Mn − Mg alloy. Trans Nonferrous Metals Soc China 24(2014):2208–2213. doi: 10.1016/s1003-6326(14)63334-3 CrossRefGoogle Scholar
  46. 46.
    Von Witzendorff P, Kaierle S, Suttmann O, Overmeyer L (2015) In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility. Metall Mater Trans A 46A:1678–1688. doi: 10.1007/s11661-015-2749-z CrossRefGoogle Scholar
  47. 47.
    Svensson L E, Karlsson L and Soder R (2014) Welding enabling light weight design of heavy vehicle chassis, Science and Technology of Welding and Joining, (SPECIAL ISSUE ARTICLE) 2014, Vol. 000, No. 000, pp. 1–10; doi:  10.1179/1362171814y.0000000269
  48. 48.
    Lee CH, Kim SW, Yoon EP (2000) Electron beam welding characteristics of high strength aluminum alloys for express train applications. Sci Technol Weld Join 5(5):277–283. doi: 10.1179/136217100101538326 CrossRefGoogle Scholar
  49. 49.
    Avilov VV, Gumenyuk A, Lammers M, Rethmeier M (2012) PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Join 17(2):128–133. doi: 10.1179/1362171811y.0000000085 CrossRefGoogle Scholar
  50. 50.
    Tu JF, Paleocrassas AG (2011) Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser welding. J Mater Process Technol 211(2011):95–102. doi: 10.1016/j.jmatprotec.2010.09.001 CrossRefGoogle Scholar
  51. 51.
    Tu J F, Paleocrassas A G (2010) Low speed laser welding of aluminum alloys using single-mode fiber lasers. In: Xiaodong N (ed) Engineering » electrical and electronic engineering » "Laser welding". North Carolina State University, USA, pp. 3–76 doi:  10.5772/9857
  52. 52.
    Lumley R (2011) Fundamentals of aluminium metallurgy-Production, processing and applications edited by Roger Lumley, Woodhead Publishing Limited, ISBN 978-1-84569-654-2, Pg. 1–8, doi:  10.1533/9780857090256.1
  53. 53.
    Mazzolani F M (2003) Aluminium Structural Design, International Centre For Mechanical Sciences, Courses and Lectures - No. 443, published by Springer-Verlag Wien New York, ISBN 978-3-211-00456-2,, Pg. 1–30, DOI:  10.1007/978-3-7091-2794-0
  54. 54.
    King J F (2001) The aluminium industry, Woodhead Publishing Limited, ISBN 978-1-85573-151-6, Pg. 1–5, doi:  10.1016/b978-1-85573-151-6.50008-2
  55. 55.
    Dwight J (1999) Aluminium Design and Construction, Taylor & Francis Group, ISBN 0 419 15710 7, Pg. 18–39, 77–103, doi:  10.4324/9780203028193
  56. 56.
    Jacobs M H (1999) Metallurgical Background to Alloy Selection and Specifications for Wrought, Cast and Special Applications, Training in Aluminium Application Technologies (TALAT) Lecture-1255, European Aluminium Association (EAA), Pg. 1–16Google Scholar
  57. 57.
    Muster T H, Hughes A E and Thompson G E (2009) Copper Distributions in Aluminium Alloys, Nova Science Publishers, Inc. New York, ISBN: 978-1-60741-201-4, Pg. 1–23Google Scholar
  58. 58.
    Metson J (2011) Fundamentals of aluminium metallurgy, Production, Processing and applications edited by Rodger Lumley, Production of alumina, Pg. 23–37, doi:  10.1533/9780857090256
  59. 59.
    Davies G (2003) Materials for Automobile Bodies, Butterworth-Heinemann, An imprint of Elsevier, ISBN 0 7506 5692 1, Pg. 87–90, 146–157, doi:  10.1016/b978-075065692-4/50021-2,  10.1016/b978-075065692-4/50022-4
  60. 60.
    Heinen P, Wu H, Olowinsky A, Gillner A (2014) Helium-tight laser beam welding of aluminum with brillant laser beam radiation, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):554–565. doi: 10.1016/j.phpro.2014.08.043 CrossRefGoogle Scholar
  61. 61.
    Dittrich D, Standfuss J, Liebscher J, Brenner B, Beyer E (2011) Laser beam welding of hard to weld al alloys for a regional aircraft fuselage design—first results. Phys Procedia 12(2011):113–122. doi: 10.1016/j.phpro.2011.03.015 CrossRefGoogle Scholar
  62. 62.
    Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras G (2007) Steel to aluminum key-hole laser welding. Mater Sci Eng A 447(2007):197–208. doi: 10.1016/j.msea.2006.10.106 CrossRefGoogle Scholar
  63. 63.
    Zhu J, Lin L, Zhu L (2005) CO2 and diode laser welding of AZ31 magnesium alloy. Appl Surf Sci 247(2005):300–306. doi: 10.1016/j.apsusc.2005.01.162 CrossRefGoogle Scholar
  64. 64.
    Mathieu A, Shabadi R, Deschamps A, Sueryc M, Matte S, Grevey D, Cicala E (2007) Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Optics Laser Technol 39(2007):652–661. doi: 10.1016/j.optlastec.2005.08.014 CrossRefGoogle Scholar
  65. 65.
    Scherm F, Bezold J, Glatzel U (2012) Laser welding of Mg alloy MgAl3Zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material. Sci Technol Weld Join 17(5):364–367. doi: 10.1179/136217112x13333824902080 CrossRefGoogle Scholar
  66. 66.
    Badini C, Pavese M, Fino P, Biamino S (2009) Laser beam welding of dissimilar aluminum alloys of 2000 and 7000 series: effect of post welding thermal treatments on T joint strength. Sci Technol Weld Join 14(6):484–492. doi: 10.1179/136217108x372559 CrossRefGoogle Scholar
  67. 67.
    Laukant H, Wallmann C, Muller M, Korte M, Stirn B, Haldenwanger HG, Glatzel U (2005) Fluxless laser beam joining of aluminum with zinc coated steel. Sci Technol Weld Join 10(2):219–226. doi: 10.1179/174329305x37051 CrossRefGoogle Scholar
  68. 68.
    Tomashchuk I, Sallamand P, Cicala E, Peyre P, Grevey D (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titaniumalloy Ti6Al4V. J Mater Process Technol 217(2015):96–104. doi: 10.1016/j.jmatprotec.2014.10.025 CrossRefGoogle Scholar
  69. 69.
    Huang D, McClure JC, Nunes AC (1997) Gas contamination during plasma welding in AI-Li alloy 2195. Sci Technol Weld Join 2(5):209–211. doi: 10.1179/stw.1997.2.5.209 CrossRefGoogle Scholar
  70. 70.
    The aluminium association: Product Market, URL: accessed 22nd May, 2015
  71. 71.
    EAI: Aluminium alloys in aviation: URL: accessed 22nd May, 2015
  72. 72.
    Nair BS, Phanikumar G, Rao K. P and Sinha P. P. (2007): Improvement of mechanical properties of gas tungsten arc and electron beam welded AA2219 (Al–6 wt-%Cu) alloy, Science and Technology of Welding and Joining, (ORIGINAL RESEARCH PAPER) 2007, Vol. 12, No. 7, pp.579-585; DOI: 10.1179/174329307x227210Google Scholar
  73. 73.
    Weld guru: Guide to laser welding, URL: accessed on 20th May, 2015
  74. 74.
    Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminum alloys. Int Mater Rev 44(6):238–266. doi: 10.1179/095066099101528298 CrossRefGoogle Scholar
  75. 75.
    Duley W W (1983) Laser Processing and Analysis of Materials, PLENUM PRESS, pg. 1–44; ISBN 978-1-4757-0195-1 doi:  10.1007/978-1-4757-0193-7
  76. 76.
    Kocak M, dos Santos J, Riekehr S (2001) Trends in laser beam welding technology and fracture assessment of weld joints. Sci Technol Weld Join 6(6):347–350. doi: 10.1179/stw.2001.6.6.347 CrossRefGoogle Scholar
  77. 77.
    Dawes C (1992) Laser welding- A practical guide, Woodhead Publishing Limited, pg. 1–28; ISBN 978–1 -85573-034-2; doi:  10.1533/9781845698843
  78. 78.
    Yilbas B S, Akhtar S, Shuja S Z (2013) Laser Forming and Welding Processes, Springer International Publishing, pg.1-4; ISBN 978-3-319-00980-3: doi:  10.1007/978-3-319-00981-0
  79. 79.
    Lin L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(2000):231–253. doi: 10.1016/s0143-8166(00)00066-x Google Scholar
  80. 80.
    Olsen F O and Alting L (1995) Pulsed Laser Materials Processing, ND-YAG versus CO, Lasers, Annals of the ClRP Vol. 44/1/1995, pp. 141–145; doi:  10.1016/s0007-8506(07)62293-8
  81. 81.
    Walsh CA (2002) Laser welding—literature review, materials science and metallurgy department. University of Cambridge, EnglandGoogle Scholar
  82. 82.
    Duley W W (1976) C02 Lasers Effects and Applications, Academic Press, pg. 1–15; ISBN 0-12-223350-6; doi:  10.1016/b978-0-12-223350-0.50007-9
  83. 83.
    Koechner W (2006) Solid-State Laser Engineering, Springer Science, pg. 1–10; ISBN-13: 978-0387-29094-2; doi:  10.1007/0-387-29338-8_1
  84. 84.
    Na X (2010) Laser Welding, Published by Sciyo, pg. 1–10, 47–60; ISBN 978-953-307-129-9; doi:  10.5772/265
  85. 85.
    Mrna L, Sarbort M, Rerucha S, Jedlicka P (2013) Correlation between the keyhole depth and the frequency characteristics of light emissions in laser welding, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):469–477. doi: 10.1016/j.phpro.2013.03.103 CrossRefGoogle Scholar
  86. 86.
    Ha J, Huh H (2013) Failure characterization of laser welds under combined loading conditions. Int J Mech Sci 69(2013):40–58. doi: 10.1016/j.ijmecsci.2013.01.022 CrossRefGoogle Scholar
  87. 87.
    Li Z, Gobbi SL (1997) Laser welding for lightweight structures. J Mater Process Technol 70(1997):I37–144. doi: 10.1016/s0924-0136(97)02906-3 Google Scholar
  88. 88.
    Li S, Chen G, Zhang M, Zhou Y, Zhang Y (2014) Dynamic keyhole profile during high-power deep-penetration laser welding. J Mater Process Technol 214(2014):565–570. doi: 10.1016/j.jmatprotec.2013.10.019 CrossRefGoogle Scholar
  89. 89.
    Industrial laser solutions: Laser development at Volvo published on 03/01/2013; URL: accessed on 4th June, 2015
  90. 90.
    Industrial laser solutions: Body-in-white diode laser brazing published on 09/01/2011; URL: accessed on 4th June, 2015
  91. 91.
    Cui L, Li XY, He DY, Chen L, Gong SL (2013) Study on microtexture of laser welded 5A90 aluminum–lithium alloys using electron backscattered diffraction. Sci Technol Weld Join 18(3):204–209. doi: 10.1179/1362171812y.0000000092 CrossRefGoogle Scholar
  92. 92.
    Tawfiq TA, Taha ZA, Hussein FI, Shehab AA (2012) Spot welding of dissimilar metals using an automated Nd:YAG laser system. Iraqi J Laser Part A 11:1–5Google Scholar
  93. 93.
    Möller F, Thomy C (2013) Interaction effects between laser beam and plasma arc in hybrid welding of aluminum, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):81–89. doi: 10.1016/j.phpro.2013.03.054 CrossRefGoogle Scholar
  94. 94.
    Masoumi M, Marashi SPH, Pouranvari M, Sabbaghzadeh J, Torkamany MJ (2009) Assessment of the effect of laser spot welding parameters on the joint quality using Taguchi Method, METAL 2009. Hradec Moravicí 5:19–21Google Scholar
  95. 95.
    Aalderink BJ, Pathiraj B, Aarts RGKM (2009) Seam gap bridging of laser based processes for the welding of aluminum sheets for industrial applications. Int J Adv Manuf Technol. doi: 10.1007/s00170-009-2270-x Google Scholar
  96. 96.
    Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser Welding. Phys Procedia 39(2012):8–16. doi: 10.1016/j.phpro.2012.10.008 CrossRefGoogle Scholar
  97. 97.
    Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects, LANE 2010. Phys Procedia 5(2010):9–17. doi: 10.1016/j.phpro.2010.08.024 CrossRefGoogle Scholar
  98. 98.
    Tao W, Li LQ, Chen YB, Wu L (2008) Joint strength and failure mechanism of laser spot weld of mild steel sheets under lap shear loading. Sci Technol Weld Join 13(8):754–759. doi: 10.1179/136217108x338917 CrossRefGoogle Scholar
  99. 99.
    Kessler B (2013) Fiber laser welding in the car body shop - laser seam stepper versus remote laser welding. J KWJS 31(4):17–22. doi: 10.5781/KWJS.2013.31.4.17 Google Scholar
  100. 100.
    Huber S, Glasschroeder J, Zaeh MF (2011) Analysis of the metal vapour during laser beam welding. Phys Procedia 12(2011):712–719. doi: 10.1016/j.phpro.2011.03.089 CrossRefGoogle Scholar
  101. 101.
    Mahrle A, Rose S, Schnick M, Beyer E, Fussel U (2013) Stabilisation of plasma welding arcs by low power laser beams. Sci Technol Weld Join 18(4):323–328. doi: 10.1179/1362171813y.0000000109 CrossRefGoogle Scholar
  102. 102.
    Schweier M, Heins JF, Haubold MW, Zaeh MF (2013) Spatter formation in laser welding with beam oscillation, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):20–30. doi: 10.1016/j.phpro.2013.03.047 CrossRefGoogle Scholar
  103. 103.
    Tzeng Y-F (2000) Parametric analysis of the pulsed Nd:YAG laser seam-welding process. J Mater Process Technol 102(2000):40–47. doi: 10.1016/s0924-0136(00)00447-7 CrossRefGoogle Scholar
  104. 104.
    Blecher JJ, Galbraith CM, Van Vlack C, Palmer TA, Fraser JM, Webster PJL, DebRoy T (2014) Real time monitoring of laser beam welding keyhole depth by laser interferometry. Sci Technol Weld Join 19(7):560–564. doi: 10.1179/1362171814y.0000000225 CrossRefGoogle Scholar
  105. 105.
    De A, DebRoy T (2011) A perspective on residual stresses in welding. Sci Technol Weld Join 16(3):204–208. doi: 10.1179/136217111x12978476537783 CrossRefGoogle Scholar
  106. 106.
    Assuncao E, Williams S, Yapp D (2012) Interaction time and beam diameter effects on the conduction mode limit. Opt Lasers Eng 50(2012):823–828. doi: 10.1016/j.optlaseng.2012.02.001 CrossRefGoogle Scholar
  107. 107.
    Okon P, Dearden G, Watkins K, Sharp M, French P (2002) Laser Welding of Aluminum Alloy 5083, 21st International congress on Applications of Lasers and electro-optics, Scottsdale, October 14–17, 2002 (ICALEO 2002) ISBN: 0-912035-72-2Google Scholar
  108. 108.
    Chen YB, Lei ZL, Li LQ, Wu L (2006) Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci Technol Weld Joining 11(4):403–411. doi: 10.1179/174329306x129535 CrossRefGoogle Scholar
  109. 109.
    Katayama S, Mizutani M, Matsunawa A (1997) Modeling of melting and solidification behavior during laser spot welding. Sci Technol Weld Join 2(1):1–9. doi: 10.1179/stw.1997.2.1.1 CrossRefGoogle Scholar
  110. 110.
    Kawahito Y, Matsumoto N, Abe Y, Katayama S (2011) Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. J Mater Process Technol 211(2011):1563–1568. doi: 10.1016/j.jmatprotec.2011.04.002 CrossRefGoogle Scholar
  111. 111.
    Zhang MJ, Chen GY, Zhou Y, Li SC, Deng H (2013) Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate. Appl Surf Sci 280(2013):868–875. doi: 10.1016/j.apsusc.2013.05.081 CrossRefGoogle Scholar
  112. 112.
    Sokolov M, Salminen A (2014) Methods for improving laser beam welding efficiency, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):450–457. doi: 10.1016/j.phpro.2014.08.148 CrossRefGoogle Scholar
  113. 113.
    Tsukamoto S (2011) High speed imaging technique Part 2—high speed imaging of power beam welding phenomena. Sci Technol Weld Join 16(1):44–55. doi: 10.1179/136217110x12785889549949 CrossRefGoogle Scholar
  114. 114.
    Zhao CX, Kwakernaak C, Pan Y, Richardson IM, Saldi Z, Kenjeres S, Kleijn CR (2010) The effect of oxygen on transitional Marangoni flow in laser spot welding. Acta Mater 58(2010):6345–6357. doi: 10.1016/j.actamat.2010.07.056 CrossRefGoogle Scholar
  115. 115.
    Youhei A, Yousuke K, Hiroshi N, Koji N, Masami M, Seiji K (2014) Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminum alloy with high power and high brightness laser. Sci Technol Weld Join 19(4):324–332. doi: 10.1179/1362171813y.0000000182 CrossRefGoogle Scholar
  116. 116.
    Karkhin VA, Plochikhine VV, Bergmann HW (2002) Solution of inverse heat conduction problem for determining heat input, weld shape, and grain structure during laser welding. Sci Technol Weld Join 7(4):224–231. doi: 10.1179/136217102225004202 CrossRefGoogle Scholar
  117. 117.
    Chen YB, Miao YG, Li LQ, Wu L (2008) Arc characteristics of laser-TIG double-side welding. Sci Technol Weld Join 13(5):438–444. doi: 10.1179/174329308x341861 CrossRefGoogle Scholar
  118. 118.
    Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterization of plasma induced during high power fiber laser welding of stainless steel. Sci Technol Weld Join 13(8):744–748. doi: 10.1179/136217108x329313 CrossRefGoogle Scholar
  119. 119.
    Chen YB, Zhao YB, Lei ZL, Li LQ (2012) Effects of laser induced metal vapor on arc plasma during laser arc double sided welding of 5A06 aluminum alloy. Sci Technol Weld Join 17(1):69–76. doi: 10.1179/1362171811y.0000000078 CrossRefGoogle Scholar
  120. 120.
    Frompo: Principes van geleidings- en dieplassen; URL: accessed on 10th June, 2015
  121. 121.
    He X, DebRoy T (2003) Probing temperature during laser spot welding from vapor composition and modeling. J Appl Phys 94(10):6949–6958. doi: 10.1063/1.1622118 CrossRefGoogle Scholar
  122. 122.
    Mujibur Rahman ABM, Kumar S, Gerson AR (2007) Galvanic corrosion of laser weldments of AA6061 aluminum alloy. Corros Sci 49(2007):4339–4351. doi: 10.1016/j.corsci.2007.04.010 CrossRefGoogle Scholar
  123. 123.
    Mattei S, Grevey D, Mathieu A, Kirchner L (2009) Using infrared thermography in order to compare laser and hybrid (laser + MIG) welding processes. Optics Laser Technol 41(2009):665–670. doi: 10.1016/j.optlastec.2009.02.005 CrossRefGoogle Scholar
  124. 124.
    Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminum alloys. Mater Sci Eng A 363(2003):40–52. doi: 10.1016/s0921-5093(03)00637-3 CrossRefGoogle Scholar
  125. 125.
    Stritt P, Hagenlocher C, Kizler C, Weber R, Rüttimann C, Graf T (2014) Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064 nm, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56:759–767. doi: 10.1016/j.phpro.2014.08.083 CrossRefGoogle Scholar
  126. 126.
    Curcio F, Daurelio G, Memola Capece Minutolo F, Caiazzo F (2006) On the welding of different materials by diode laser. J Mater Process Technol 175(2006):83–89. doi: 10.1016/j.jmatprotec.2005.04.026 CrossRefGoogle Scholar
  127. 127.
    DILAS-The diode laser company: URL: accessed on 2nd June, 2015
  128. 128.
    Quintino L, Costa A, Miranda R, Yapp D, Kumar V, Kong CJ (2007) Welding with high power fiber lasers—a preliminary study. Mater Des 28(2007):1231–1237. doi: 10.1016/j.matdes.2006.01.009 CrossRefGoogle Scholar
  129. 129.
    Wang XJ, Lu FG, Wang HP, Cui HC, Tang XH, Wu YX (2015) Experimental and numerical analysis of solidification cracking behavior in fiber laser welding of 6013 aluminum alloy. Sci Technol Weld Join 20(1):58–67. doi: 10.1179/1362171814y.0000000254 CrossRefGoogle Scholar
  130. 130.
    Oliveira AC, Siqueira RHM, Riva R, Lima MSF (2015) One-sided laser beam welding of autogenous T-joints for 6013-T4 aluminum alloy. Mater Des 65(2015):726–736. doi: 10.1016/j.matdes.2014.09.055 CrossRefGoogle Scholar
  131. 131.
    Fu B, Qin G, Meng X, Ji Y, Zou Y, Lei Z (2014) Materials Science & Engineering A. Mater Sci Eng 617(2014):1–11. doi: 10.1016/j.msea.2014.08.038 CrossRefGoogle Scholar
  132. 132.
    Paleocrassas AG, Tu JF (2010) Inherent instability investigation for low speed laser welding of aluminum using a single-mode fiber laser. J Mater Process Technol 210(2010):1411–1418. doi: 10.1016/j.jmatprotec.2010.04.002 CrossRefGoogle Scholar
  133. 133.
    Wang T, Yang Z, Chen Y, Li L, Jiang Z, Zhang Y (2013) Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: filler wire melting behavior, process stability, and their effects on porosity defects. Optics Laser Technol 52(2013):1–9. doi: 10.1016/j.optlastec.2013.04.003 Google Scholar
  134. 134.
    Tusek J, Suban M (1999) Hybrid welding with arc and laser beam. Sci Technol Weld Join 4(5):308–311. doi: 10.1179/136217199101537923 CrossRefGoogle Scholar
  135. 135.
    Gao M, Zeng X, Hu Q (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184(2007):177–183. doi: 10.1016/j.jmatprotec.2006.11.019 Google Scholar
  136. 136.
    Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminum alloy using a fiber laser, 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering. Proc CIRP 12(2013):151–156. doi: 10.1016/j.procir.2013.09.027 CrossRefGoogle Scholar
  137. 137.
    Schultz V, Seefeld T, Vollertsen F (2014) Gap bridging ability in laser beam welding of thin aluminum sheets, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):545–553. doi: 10.1016/j.phpro.2014.08.037 CrossRefGoogle Scholar
  138. 138.
    Wu S, Ri X (2015) Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium. Optics Laser Technol 67(2015):169–175. doi: 10.1016/j.optlastec.2014.10.018 CrossRefGoogle Scholar
  139. 139.
    Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P (2011) Analysis of hybrid Nd:YAG laser-MAG arc welding processes. Optics Laser Technol 43(2011):1155–1166. doi: 10.1016/j.optlastec.2011.03.002 CrossRefGoogle Scholar
  140. 140.
    Ascari A, Fortunato A, Orazi L, Campana G (2012) The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Optics Laser Technol 44(2012):1485–1490. doi: 10.1016/j.optlastec.2011.12.014 CrossRefGoogle Scholar
  141. 141.
    Zhang C, Gao M, Li G, Chen C, Zeng XY (2013) Strength improving mechanism of laser arc hybrid welding of wrought AA 2219 aluminum alloy using AlMg5 wire. Sci Technol Weld Join 18(8):703–710. doi: 10.1179/1362171813y.0000000153 CrossRefGoogle Scholar
  142. 142.
    Liu LM, Yuan ST, Li CB (2012) Effect of relative location of laser beam and TIG arc in different hybrid welding modes. Sci Technol Weld Join 17(6):441–446. doi: 10.1179/1362171812y.0000000033 Google Scholar
  143. 143.
    Yan J, Zeng X, Gao M, Lai J, Lin T (2009) Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO2 laser-MIG hybrid welding. Appl Surf Sci 255(2009):7307–7313. doi: 10.1016/j.apsusc.2009.03.088 CrossRefGoogle Scholar
  144. 144.
    Casalino G (2007) Statistical analysis of MIG-laser CO2 hybrid welding of Al–Mg alloy. J Mater Process Technol 191(2007):106–110. doi: 10.1016/j.jmatprotec.2007.03.065 CrossRefGoogle Scholar
  145. 145.
    Zhang D-Q, Li J, Joo HG, Lee KY (2009) Corrosion properties of Nd:YAG laser–GMA hybrid welded AA6061 Al alloy and its microstructure. Corros Sci 51(2009):1399–1404. doi: 10.1016/j.corsci.2009.03.030 CrossRefGoogle Scholar
  146. 146.
    He C, Huang C, Liu Y, Li J, Wang Q (2015) Effects of mechanical heterogeneity on the tensile and fatigue behaviors in a laser-arc hybrid welded aluminum alloy joint. Mater Des 65(2015):289–296. doi: 10.1016/j.matdes.2014.08.050 CrossRefGoogle Scholar
  147. 147.
    Ola OT, Doern FE (2015) Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques. Mater Des 77(2015):50–58. doi: 10.1016/j.matdes.2015.03.064 CrossRefGoogle Scholar
  148. 148.
    Tong H, Ueyama T, Nakata K, Ushio M (2003) High speed welding of aluminum alloy sheets using laser assisted alternating current pulsed metal inert gas process. Sci Technol Weld Join 8(3):229–234. doi: 10.1179/136217103225010853 CrossRefGoogle Scholar
  149. 149.
    Yan-Bin C, Miao Y-G, Li-Qun L, Wu L (2009) Joint performance of laser-TIG double-side welded 5A06 aluminum alloy. Trans Nonferrous Metal Soc China 19(2009):26–31. doi: 10.1016/s1003-6326(08)60223-x Google Scholar
  150. 150.
    Wu SC, Yu C, Zhang WH, Fu YN, Helfen L (2015) Porosity induced fatigue damage of laser welded 7075-T6 joints investigated via synchrotron X-ray microtomography. Sci Technol Weld Join 20(1):11–19. doi: 10.1179/1362171814y.0000000249 CrossRefGoogle Scholar
  151. 151.
    Yang ZB, Tao W, Li LQ, Chen YB, Li FZ, Zhang YL (2012) Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: Process, microstructure, and mechanical properties. Mater Des 33(2012):652–658. doi: 10.1016/j.matdes.2011.07.059 CrossRefGoogle Scholar
  152. 152.
    Schneider A, Avilov V, Gumenyuk A, Rethmeier M (2013) Laser beam welding of aluminum alloys under the influence of an electromagnetic field, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):4–11. doi: 10.1016/j.phpro.2013.03.045 CrossRefGoogle Scholar
  153. 153.
    Gatzen M, Tang Z, Vollertsen F (2011) Effect of electromagnetic Stirring on the Element Distribution in Laser Beam Welding of Aluminum with Filler Wire, LiM 2011. Phys Procedia 12(2011):56–65. doi: 10.1016/j.phpro.2011.03.008 CrossRefGoogle Scholar
  154. 154.
    Ancona A, Sibillano T, Tricarico L, Spina R, Lugara PM, Basile G, Schiavone S (2005) Comparison of two different nozzles for laser beam welding of AA5083 aluminum alloy. J Mater Process Technol 164–165(2005):971–977. doi: 10.1016/j.jmatprotec.2005.02.048 CrossRefGoogle Scholar
  155. 155.
    Ancona A, Lugara PM, Sorgente D, Tricarico L (2007) Mechanical characterization of CO2 laser beam butt welds of AA5083. J Mater Process Technol 191(2007):381–384. doi: 10.1016/j.jmatprotec.2007.03.048 CrossRefGoogle Scholar
  156. 156.
    Cui L, Li X, He D, Chen L, Gong S (2012) Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy. Mater Character 71(2012):95–102. doi: 10.1016/j.matchar.2012.06.011 CrossRefGoogle Scholar
  157. 157.
    Pastor M, Zhao H, Debroy T (2009) Pore formation during continuous wave Nd:YAG laser welding of aluminum for automotive applications. Weld Int 15(4):275–281. doi: 10.1080/09507110109549355 CrossRefGoogle Scholar
  158. 158.
    Malek Ghaini F, Sheikhi M, Torkamany MJ, Sabbaghzadeh J (2009) The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminum alloy. Mater Sci Eng A 519(2009):167–171. doi: 10.1016/j.msea.2009.04.056 CrossRefGoogle Scholar
  159. 159.
    de Mota Siqueira RH, de Capella Oliveira A, Riva R, Abdalla AJ, Baptista CARP, de Fernandes Lima MS (2014) J Braz Soc Mech Sci Eng. doi: 10.1007/s40430-014-0175-6, Technical paperGoogle Scholar
  160. 160.
    Sanchez-Amaya JM, Delgado T, Gonzalez-Rovira L, Botana FJ (2009) Laser welding of aluminum alloys 5083 and 6082 under conduction regime. Appl Surf Sci 255(2009):9512–9521. doi: 10.1016/j.apsusc.2009.07.081 CrossRefGoogle Scholar
  161. 161.
    Zain-ul-abdein M, Nelias D, Jullien J-F, Deloison D (2010) Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4. Mater Sci Eng A 527(2010):3025–3039. doi: 10.1016/j.msea.2010.01.054 CrossRefGoogle Scholar
  162. 162.
    Liu H, Shang DG, Guo Z-K, Zhao YG, Liu JZ (2014) Fatigue crack growth property of laser beam welded 6156 aluminum alloy. Fatigue Fract Eng Mater Struct 37:937–944. doi: 10.1111/ffe.12176 CrossRefGoogle Scholar
  163. 163.
    Hu B, Richardson IM (2007) Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Mater Sci Eng A 459(2007):94–100. doi: 10.1016/j.msea.2006.12.094 CrossRefGoogle Scholar
  164. 164.
    Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugara PM (2006) A study of the shielding gas influence on the laser beam welding of AA5083 aluminum alloys by in-process spectroscopic investigation. Opt Lasers Eng 44(2006):1039–1051. doi: 10.1016/j.optlaseng.2005.09.002 CrossRefGoogle Scholar
  165. 165.
    Zhao YB, Lei ZL, Chen YB, Tao W (2011) A comparative study of laser-arc double-sided welding and double-sided arc welding of 6 mm 5A06 aluminum alloy. Mater Des 32(2011):2165–2171. doi: 10.1016/j.matdes.2010.11.041 CrossRefGoogle Scholar
  166. 166.
    Eibl M, Sonsino CM, Kaufmann H, Zhang G (2003) Fatigue assessment of laser welded thin sheet aluminum. Int J Fatigue 25(2003):719–731. doi: 10.1016/s0142-1123(03)00053-7 CrossRefGoogle Scholar
  167. 167.
    Guo-liang Q, Wang G-G, Zeng-da Z (2012) Effects of activating flux on CO2 laser welding process of 6013 Al alloy. Trans Nonferrous Metals Soc China 22(2012):23–29. doi: 10.1016/s1003-6326(11)61134-5 Google Scholar
  168. 168.
    KahP, Hiltunen E. and Martikainen J (2010) Investigation of Hot Cracking in the Welding of Aluminum Alloys (6005 & 6082), 63rd Annual Assembly & International Conference of the International Institute of Welding 11–17 July 2010, Istanbul, Turkey, pp. 373–380Google Scholar
  169. 169.
    Chen XL, Yan HG, Chen JH, Su B, Yu ZH (2013) Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints. Sci Technol Weld Join 18(6):458–465. doi: 10.1179/1362171813y.0000000117 CrossRefGoogle Scholar
  170. 170.
    Marya M, Edwards GR (2002) Influence of laser beam variables on AZ91D weld fusion zone microstructure. Sci Technol Weld Join 7(5):286–293Google Scholar
  171. 171.
    Reddy GM, Gokhale AA, Prasad KS, Prasad Rao K (1998) Chill zone formation in Al-Li alloy welds. Sci Technol Weld Join 3(4):208–212. doi: 10.1179/stw.1998.3.4.208 CrossRefGoogle Scholar
  172. 172.
    Avilov V, Schneider A, Gumenyuk A, Rethmeier M (2012) Electromagnetic Control of the Weld Pool Dynamics in Partial Penetration Laser Beam Welding of Aluminum Alloys, Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany, p 233–236Google Scholar
  173. 173.
    Cicala E, Duffet G, Grevey D (2008) Optimization Of The Laser Welding of Aluminum Alloys used in Aeronautics, Nonconventional Technologies Review – no. 2/2008, pp. 9–16Google Scholar
  174. 174.
    Taban E, Kaluc E (2011) Welding behavior of Duplex and Superduplex stainless steels using Laser and Plasma Arc Welding processes. Welding World 55(7–8):48–57. doi: 10.1007/bf03321307 CrossRefGoogle Scholar
  175. 175.
    El T, Deleu E, Dhooge A, Kaluc E (2009) Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater Des 30(2009):1193–1200. doi: 10.1016/j.matdes.2008.06.030 Google Scholar

Copyright information

© International Institute of Welding 2016

Authors and Affiliations

  1. 1.The Federal University of Technology AkureAkureNigeria
  2. 2.Kocaeli UniversityKocaeliTurkey

Personalised recommendations