Advertisement

Welding in the World

, Volume 59, Issue 5, pp 731–742 | Cite as

Fatigue assessment of welded joints using stress averaging and critical distance approaches

  • J. BaumgartnerEmail author
  • H. Schmidt
  • E. Ince
  • T. Melz
  • K. Dilger
Research Paper

Abstract

This paper comprises a brief methodical analysis and practical application of both the stress averaging approach according to Neuber and the critical distance approach according to Taylor for a fatigue assessment on welded steel structures under axial loading. The stress averaging approach, as established theoretically by Neuber, is discussed and compared to the effective notch stress approach with a reference radius r ref = 1 mm and also to the r ref = 0.05 mm concept which is usually applied for thin-walled structures. Furthermore, both approaches are applied for an assessment of 38 individual test series. As a result of the evaluations, a microstructural length ρ* = 0.40 mm is recommended. For the critical distance approach, a distance a = 0.10 mm was derived. Fatigue design (FAT) values are recommended for the practical application. Compared to the notch stress approach with a radius r ref = 0.05 mm, it was possible to improve the assessment quality significantly. The non-local approaches should be preferred to the r ref = 0.05 mm concept, especially for welded components using thin sheets for which the radius of 1 mm cannot be applied.

Keywords (IIW Thesaurus)

Notch effect Fatigue strength Finite element analysis Elastic analysis 

Notes

Acknowledgments

The investigations presented here were supported by financial funding from the Federal Ministry of Economics and Technology (BMWi) via the Federation of Industrial Research Associations (Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V. = AiF e.V.) under grant 16.431. Technical and scientific support during the project was provided by the German Association for Research on Automotive Technology (FAT) and also by the German Welding Society DVS (Forschungsvereinigung Schweißen und verwandte Verfahren e. V.) in the working group FA9. The authors would like to thank the AiF, the FAT, the DVS, and the members of the AK25 and FA9 for their support. The authors are particularly grateful to Dr. Genbao Zhang for the valuable discussions.

References

  1. 1.
    Rennert R, Kullig E, Vormwald M, Esderts A, Siegele D (2012) FKM Richtlinie - Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen, 6th edn. VDMA Verlag GmbH, Frankfurt/MGoogle Scholar
  2. 2.
    Hobbacher A (2009) Recommendations for fatigue design of welded joints and components, Welding Research Council, Bulletin 520Google Scholar
  3. 3.
    Neuber H (1958) Kerbspannungslehre, 2nd edn. Springer Verlag, BerlinCrossRefGoogle Scholar
  4. 4.
    Neuber H (1968) Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20(7):245–251Google Scholar
  5. 5.
    Radaj D (ed) (1990) Design and analysis of fatigue resistant welded structures. Woodhead Publishing, CambridgeGoogle Scholar
  6. 6.
    Olivier R, Koettgen VB (1989) Schweißverbindungen I - Schwingfestigkeitsnachweis für Schweissverbindungen auf der Grundlage örtlicher Beanspruchungen, Abschlussbericht, Forschungkuratorium Maschinenbau (FKM)Google Scholar
  7. 7.
    Bruder T, Störzel K, Baumgartner J, Hanselka H (2012) Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds. Int J Fatigue 34(1):86–102CrossRefGoogle Scholar
  8. 8.
    Kranz B, Sonsino C (2010) Verification of FAT values for the application of the notch stress concept with the reference radii r(ref) = 1.00 and 0.05 mm. Weld World 54:R218–R224CrossRefGoogle Scholar
  9. 9.
    Pedersen M, Mouritsen O, Hansen M, Andersen J, Wenderby J (2010) Re-analysis of fatigue data of welded joints using the notch stress approach. Int J Fatigue 32(10):1620–1626CrossRefGoogle Scholar
  10. 10.
    Zhang G, Richter B (2000) A new approach to the numerical fatigue-life prediction of spot-welded structures. Fatigue Fract Eng Mater Struct 23:499–508CrossRefGoogle Scholar
  11. 11.
    Zhang G, Eibl M, Singh S, Hahn O, Kurzok J (2002) Methods of predicting the fatigue lives of laser beam welded lap welds under shear stresses. Weld Cut 1:96–103Google Scholar
  12. 12.
    Zhang G, Sonsino CM, Sundermeier R (2012) Method of effective stress for fatigue: part II—applications to V-notches and seam welds. Int J Fatigue 37:24–40CrossRefGoogle Scholar
  13. 13.
    Zhang G (2012) Method of effective stress for fatigue: part I—a general theory. Int J Fatigue 37:17–23CrossRefGoogle Scholar
  14. 14.
    Berto F, Lazzarin P, Radaj D (2008) Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part I: basic stress equations. Eng Fract Mech 75:3060–3072CrossRefGoogle Scholar
  15. 15.
    Berto F, Lazzarin P, Radaj D (2009) Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part II: microstructural support analysis. Eng Fract Mech 76:1151–1175CrossRefGoogle Scholar
  16. 16.
    Taylor D (1999) Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21:413–420CrossRefGoogle Scholar
  17. 17.
    Berto F (2012) Fictitious notch rounding concept applied to V-notches with end holes under mode 3 loading. Int J Fatigue 38:188–193CrossRefGoogle Scholar
  18. 18.
    Radaj D, Lazzarin P, Berto F (2013) Generalised Neuber concept of fictitious notch rounding. Int J Fatigue 51:105–115CrossRefGoogle Scholar
  19. 19.
    Baumgartner J, Lipp K, Bruder T, Kaufmann H (2011) Design methods for reliable fatigue assessment of PM components. Mater Werkst 42(10):894–903CrossRefGoogle Scholar
  20. 20.
    Filippi S, Lazzarin P, Tovo R (2002) Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int J Solids Struct 39(17):4543–4565CrossRefGoogle Scholar
  21. 21.
    Lawrence F, Ho N-J, Mazumdar P (1981) Predicting the fatigue resistance of welds. Annu Rev Mater Sci 11:401–425CrossRefGoogle Scholar
  22. 22.
    Peterson R (1959) In: Sines G, Waisman J (eds) Metal fatigue. McGraw-Hill Book Company, Inc.Google Scholar
  23. 23.
    Olivier R, Koettgen VB (1991) Schweißverbindungen II - Untersuchung zur Einbindung eines neuartigen Zeit- und Dauerschwingfestigkeitsnachweises, Forschungkuratorium Maschinenbau (FKM), p 389Google Scholar
  24. 24.
    Seeger T, Amstutz H (1997) Betriebsfestigkeitsnachweise für Schweißverbindungen auf der Grundlage örtlicher KonzepteGoogle Scholar
  25. 25.
    Hobbacher A (2008) Database for the effective notch stress method at steel, JWG-XIII-XV-197-08, International Institute of WeldingGoogle Scholar
  26. 26.
    Sonsino CM (2009) A consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with reference radii rref = 1.00 and 0.05 mm. Weld World 53:64–75CrossRefGoogle Scholar
  27. 27.
    Störzel K, Baumgartner J, Bruder T (2009) Festigkeitskonzepte für schwingbelastete geschweißte Bauteile, in Große Schweißtechnische TagungGoogle Scholar
  28. 28.
    Fricke W, Tchuindjang DD (2012) Fatigue strength behaviour of stud-arc welded joints in load-carrying ship structures, International Institute of Welding, Vols. XIII-2417-12Google Scholar
  29. 29.
    Waterkotte R, Baumgartner J, Ai Q (2013) Fatigue assessment of weld ends considering crack initiation and crack propagation. Mater Test 55(7–8):529–536CrossRefGoogle Scholar
  30. 30.
    Baumgartner J, Schmidt H, Ince E (2013) AiF-Project 16.431 N/1, final report: Erweiterung des Kerbspannungskonzepts auf Nahtübergänge von Linienschweißnähten an dünnen BlechenGoogle Scholar
  31. 31.
    Spindel J, Haibach E (1979) The method of maximum likelihood applied to the statistical analysis of fatigue data. Int J Fatigue 1:81–88CrossRefGoogle Scholar
  32. 32.
    Sonsino CM (2007) Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 29(12):2246–2258CrossRefGoogle Scholar
  33. 33.
    Radaj D, Koller R, Dilthey U, Buxbaum O (1993) Laserschweißgerechtes Konstruieren. Beiträge zu innovativen Fertigungsverfahren, Deutscher Verlag für SchweißtechnikGoogle Scholar
  34. 34.
    Wiebesiek J, Störzel K, Bruder T, Kaufmann H (2011) Multiaxial fatigue behaviour of laserbeam-welded thin steel and aluminium sheets under proportional and non-proportional combined loading. Int J Fatigue 33(8):992–1005CrossRefGoogle Scholar
  35. 35.
    Vogt M, Dilger K, Kassner M (2011) Investigations on different fatigue design concepts using the example of a welded crossbeam connection from the underframe of a steel railcar body. Int J Fatigue 34(1):47–56CrossRefGoogle Scholar
  36. 36.
    Esderts A, Willen J, Kassner M (2012) Fatigue strength analysis of welded joints in closed steel sections in rail vehicles. Int J Fatigue 34(1):112–121CrossRefGoogle Scholar
  37. 37.
    Kassner M, Küppers M, Sonsino C, Bieker G, Moser C (2010) Fatigue design of welded components of railway vehicles—influence of manufacturing conditions and weld quality. Weld World 54(9–10):R267–R278CrossRefGoogle Scholar
  38. 38.
    Baumgartner J, Bruder T (2013) Influence of weld geometry and residual stresses on the fatigue strength of longitudinal stiffeners. Weld World 57:841–855CrossRefGoogle Scholar
  39. 39.
    Köttgen VB, Olivier R, Seeger T (1991) Fatigue analysis of welded connections based on local stresses, IIW - Commission XIII, no. XIII-1408-91Google Scholar
  40. 40.
    Baumgartner J, Bruder T (2013) An efficient meshing approach for the calculation of notch stresses. Weld World 57:137–145CrossRefGoogle Scholar
  41. 41.
    Sonsino CM, Bruder T, Baumgartner J (2010) S-N lines for welded thin joints—suggested slopes and FAT values for applying the notch stress concept with various reference radii. Weld World 54:375–392CrossRefGoogle Scholar
  42. 42.
    Maddox S (1976) A fracture mechanics analysis of the fatigue behaviour of a fillet welded joint. Weld Res Int 6(5)Google Scholar
  43. 43.
    Xiao Z-G, Yamada K (2004) A method of determining geometric stress for fatigue strength evaluation of steel welded joints. Int J Fatigue 26:1177–1293Google Scholar
  44. 44.
    Taylor D, Hoey D (2009) High cycle fatigue of welded joints: the TCD experience. Int J Fatigue 31:20–27CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2015

Authors and Affiliations

  • J. Baumgartner
    • 1
    Email author
  • H. Schmidt
    • 1
  • E. Ince
    • 2
  • T. Melz
    • 1
  • K. Dilger
    • 2
  1. 1.Fraunhofer Institute for Structural Durability and System Reliability LBFDarmstadtGermany
  2. 2.Institute of Joining and WeldingTU BraunschweigBrunswickGermany

Personalised recommendations