Welding in the World

, Volume 59, Issue 3, pp 443–453 | Cite as

Possibilities for compensating a higher heat input, in particular by the torch offset relative to the top sheet at the fillet weld on a lap joint

  • M. Ebert-SpiegelEmail author
  • S.-F. Goecke
  • M. Rethmeier
Research Paper


This paper deals with the use of an adaptive control system for compensating the variation in the gap height of a fillet welded lap joint. Gap bridging requires the input of additional filler material and is related to an increased energy input. Hence, the aim was a compensation of the effect of an increased heat input, in order to maintain the weld pool and excessive penetration, which can prevent consequently root reinforcement and burn-through. The findings achieved in this work show possibilities for a real-time controlled adjustments of the welding parameters in automated metal active gas (MAG) welding for compensating a higher heat input, in particular by means of the torch offset relative to the top sheet at the fillet weld on a lap joint.


MAG welding Adaptive control High strength steels Gap Energy input Mathematical models 



The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for the support of the carried out research work within the scope of the programme “Research at Universities of Applied Science”, as directive of “Qualification of young engineers”.


  1. 1.
    Apps RL, Milner DR (1955) Heat flow in argon arc welding. Br Weld J 2(10):475–485Google Scholar
  2. 2.
    Beckert M, Probst R (1973) Beitrag zu technologischen Problemen des Schmelzschweißprozesses (Contribution to technological problems of the welding process). Wiss Z TH Magdeburg 17(3/4):383–392 (in German)Google Scholar
  3. 3.
    Dilthey U (2005) Schweißtechnische Fertigungsverfahren 2 - Verhalten der Werkstoffe beim Schweißen (Welding manufacturing methods 2—behavior of the materials during welding). Springer, Heidelberg. doi: 10.1007/b139036, in GermanGoogle Scholar
  4. 4.
    Dupont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 74(12):406–416Google Scholar
  5. 5.
    Ebert-Spiegel M, Goecke SF, Rethmeier M (2014) Efficient gap filling in MAG welding using optical sensors. Weld World. doi: 10.1007/s40194-014-0145-8 Google Scholar
  6. 6.
    Fine HA, Geiger GH (1979) Handbook on material and energy balance calculations in metallurgical processes. Metallurgical Society of AIME, Warrendale. isbn: 089520360xGoogle Scholar
  7. 7.
    Fuerschbach PW, Knorovsky GA (1991) A study of melting efficiency in plasma arc and gas tungsten arc welding. Weld J 70(11):287–297Google Scholar
  8. 8.
    French IE (1984) Effects of electrode extension on deposit characteristics and metal transfer of E70T-4 electrodes. Weld J 2:167–172Google Scholar
  9. 9.
    Glickstein SS (1982) Basic studies of the arc welding process. In: David SA (ed) Trends in Welding Research in the United States. The Society, Ohio, pp 3–50. isbn: 0871701502Google Scholar
  10. 10.
    Goecke SF, Krautwald A (2005) ENERWELD – Effiziente thermische Fügeverfahren, (Efficient thermal joining processes). Krautwald Projektberater, Bremen. isbn: 978-3-940326-00-3 (in German)Google Scholar
  11. 11.
    Haelsiga A, Mayrb P (2013) Calorimetric analyses of the comprehensive heat flow of the welding process. Weld World. doi: 10.1007/s40194-014-0193-0 Google Scholar
  12. 12.
    Huismann G (2002) Advantages in using the stick out for increasing the burn off rate in gas metal arc welding. Doc. IIW-212-1026-02Google Scholar
  13. 13.
    Huismann G, Burt A (2014) Index for identifying high and low heat input into the workpiece for GMAW. IIW Doc.XII-2178-14Google Scholar
  14. 14.
    Jaeschke B, Ernst W, Luritzhofer M (2013) Verringerung von Fehlern bei der werkstoffspezifischen Bestimmung von Streckenenergie und Wärmeeinbringung moderner Lichtbogenschweißprozesse (Reduction of errors in the material-specific determination of heat input in modern arc welding processes). DVS-Berichte Band 296: 302–307. isbn: 978-3-87155-614-2 (in German)Google Scholar
  15. 15.
    Kim IS, Basu A (1998) A mathematical model of heat transfer and fluid flow in the gas metal arc welding process. J Mater Process Technol 77(1):17–24CrossRefGoogle Scholar
  16. 16.
    Lancaster JF (1999) Metallurgy of welding. Abington, Cambridge. isbn: 1855734281Google Scholar
  17. 17.
    Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30(14):1449–1454CrossRefGoogle Scholar
  18. 18.
    Matthes KJ, Richter E (2012) Schweißtechnik - Schweißen von metallischen Konstruktionswerkstoffen (Welding technology—welding of metallic construction materials). Hanser, Munich. isbn: 978-3-446-42073-1 (in German)Google Scholar
  19. 19.
    Murphy EL, Good RH (1956) Thermionic emission, field emission, and the transition region. Phys Rev 102(6):1464–1472CrossRefGoogle Scholar
  20. 20.
    Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Lowke JJ, Ostrikov K (2010) Modelling of arc welding: the importance of including the arc plasma in the computational domain. Vacuum 85:579–584CrossRefGoogle Scholar
  21. 21.
    Niles RW, Jackson CE (1975) Welding thermal efficiency of the GTAW process. Weld J 54(1):25–32Google Scholar
  22. 22.
    Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–866Google Scholar
  23. 23.
    Rykalin NN (1957) Berechnung der Wärmevorgänge beim Schweißen (Calculation of heat transactions during welding). Verlag Technik, Berlin (in German)Google Scholar
  24. 24.
    Schellhase M (1985) Der Schweißlichtbogen - ein technologisches Werkzeug (The welding arc—a technological tool). DVS-Verlag, Düsseldorf. isbn: 978-3-87155-100-0 (in German)Google Scholar
  25. 25.
    Smartt HB, Stewart JA, Einerson CJ (1985) Heat transfer in gas tungsten arc welding. Proc. ASM Intl. Welding Congress, ASM 8511–011Google Scholar
  26. 26.
    Wasznik JH, Van Den Heuvel JPM (1982) Heat generation and heat flow in the filler metal in GMA welding. Weld J 61(8):269–282Google Scholar
  27. 27.
    Watkins AD, Smartt HB, Einerson CJ (1990) Heat transfer in gas metal arc welding. In: David SA, Vitek JMProc (ed) Recent Trends in Welding Science and Technology. ASM International, Ohio, pp 19–23. isbn: 0871703726Google Scholar
  28. 28.
    Wells AA (1952) Heat flow in welding. Weld J 31(5):263–267Google Scholar
  29. 29.
    Wu CS (2010) Welding thermal processes and weld pool behaviors. CRC Press, London. isbn: 978–7111219620Google Scholar
  30. 30.
    Zine B, Saifaoui D, Dezairi A, Es-sabbar T, Boumhali A, ElMouden M (2005) Modelling of collision in the plasma sheath and the cathode erosion of electrical arc. Moroccan J Condens Matter 6(1):26–34Google Scholar

Copyright information

© International Institute of Welding 2015

Authors and Affiliations

  1. 1.Brandenburg University of Applied ScienceBrandenburg an der HavelGermany
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations