Advertisement

Welding in the World

, Volume 59, Issue 1, pp 119–126 | Cite as

Weldability studies on borated stainless steel using Varestraint and Gleeble tests

  • G. Srinivasan
  • M. Divya
  • C. R. Das
  • S. K. Albert
  • A. K. BhaduriEmail author
  • S. Lauf
  • S. Stubenrauch
  • A. Klenk
Research Paper

Abstract

Borated austenitic stainless steels are widely used in nuclear applications due to their higher neutron absorption efficiency. Weldability of these steels is a major concern due to the formation of low-melting eutectics enriched in iron, chromium, molybdenum and boron. Varestraint and Gleeble-based tests have been carried out to evaluate the solidification and liquation cracking behaviour of 304B4 Grade B stainless steel. The solidus and liquidus temperatures have been determined using differential scanning calorimetry and Scheil simulation for solidification of welds. The results indicate that this steel has good solidification cracking resistance due to the backfilling effects of eutectic borides. However, liquation cracking resistance in this steel is moderate due to its wide nil ductility range. This paper discusses the role of boron on hot cracking susceptibility of this borated austenitic stainless steel using both the Varestraint and Gleeble-based hot ductility tests.

Keywords

Welding Austenitic stainless steels Solidification cracking Liquation cracking Eutectics Weldability tests Ductility 

References

  1. 1.
    Robino CV, Cieslak MJ (1995) Metall Mater Trans A 26(7):1673–1685CrossRefGoogle Scholar
  2. 2.
    Shinodo T, Miyake H, Matsuzaka T, Matsumoto T, Kanai H (1992) Mater Sci Technol 8:913–921CrossRefGoogle Scholar
  3. 3.
    (2009) Standard specification for borated stainless steel plate, sheet and strip for nuclear applications, ASTM, A887-89Google Scholar
  4. 4.
    N.V. Kulkarni (2010) In: Proceedings of 20th Annual Conference of Indian Nuclear Society, Chennai, India, pp 61–65Google Scholar
  5. 5.
    He JY, Soliman SE, Baratta AJ, Balliett TA (2000) Nucl Technol 130:218–225Google Scholar
  6. 6.
    Moreno DA, Molina B, Ranninger C, Montero F, Izquierdo J (2004) Corrosion 60(6):573–583CrossRefGoogle Scholar
  7. 7.
    Brooks JA, Thompson AW (1991) Int Mater Rev 36(1):16–44CrossRefGoogle Scholar
  8. 8.
    Robinson JL, Scott MH (1980) Phil Trans R Soc A 295(1413):105–117CrossRefGoogle Scholar
  9. 9.
    John C. Lippold and Damian J. Kotecki Welding metallurgy and weldability of stainless steels. ISBN 0-471-47379, pp 19Google Scholar
  10. 10.
    Takalo T, Suutala N, Moisio T (1979) Metallurgical Trans A 10(8):1173–1181CrossRefGoogle Scholar
  11. 11.
    Suutala N, Takalo T, Moisio T (1980) Metall Trans A 11(5):717–725CrossRefGoogle Scholar
  12. 12.
    Kujanpaa VP, Suutala N, Moisio T (1980) Metall Constr 12(6):282–285Google Scholar
  13. 13.
    Masumoto, Takami K, Kutsuna M (1972) J Jpn Weld Soc 41:1306–1314CrossRefGoogle Scholar
  14. 14.
    Donati JR, Guttmann D, Zacharie G (1971) Rev Metall 71(10):917–930Google Scholar
  15. 15.
    Folkhard E (1998) Welding metallurgy of stainless steels. Springer Verlag, New YorkGoogle Scholar
  16. 16.
    Lundin CD, Lee CH, Qiao CYP (1988) Final report of group sponsored study—weldability and hot ductility behaviour of nuclear grade austenitic stainless steels. University of Tennessee, KnoxvilleGoogle Scholar
  17. 17.
    Lundin CD, Lingenfelter A, Grotke G, Lessman G, Mathews S (1982) Welding Research Council Bulletin, 280Google Scholar
  18. 18.
    Lin W, Lippold JC, Baeslack WA (1994) Weld J 72(4):135s–153sGoogle Scholar
  19. 19.
    Lundin CD, Qiao CYP, Lee CH (1990) In: Standardisation of Gleeble Hot Ductility Testing, Part I: Historical Review, Weldability of Materials, ASM International, Materials Park, Ohio, USA, pp 1–8Google Scholar
  20. 20.
    Lin W, Nelson TW, Lippold JC, Baeslack WA (1993) International trends in welding science and technology. In: David SA and Vitek JM (eds) ASM International, pp 695–702Google Scholar
  21. 21.
    Shankar V, Gill TPS, Mannan SL and Sundaresan S (2003) Sadhana, 28, parts 3&4: 359–382Google Scholar
  22. 22.
    Musech H (1985) Nucl Eng Des 85(2):155–161CrossRefGoogle Scholar
  23. 23.
    Blind D, Weber G and Kussmaul K (1999) In: Proceedings of 15th International Conference on Structural Mechanics in Reactor Technology (PCS-2), Tokyo, Japan 205–213Google Scholar
  24. 24.
    Goldschmidt HJ (1971) J Iron Steel Inst 209(11):910–911Google Scholar

Copyright information

© International Institute of Welding 2014

Authors and Affiliations

  • G. Srinivasan
    • 1
  • M. Divya
    • 1
  • C. R. Das
    • 1
  • S. K. Albert
    • 1
  • A. K. Bhaduri
    • 1
    Email author
  • S. Lauf
    • 2
  • S. Stubenrauch
    • 2
  • A. Klenk
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Materialprüfungsanstalt Universität StuttgartStuttgartGermany

Personalised recommendations