Advertisement

Welding in the World

, Volume 57, Issue 4, pp 523–539 | Cite as

Development of processing windows for diffusion bonding of aluminium/magnesium dissimilar materials

  • V. BalasubramanianEmail author
  • M. Joseph Fernandus
  • T. Senthilkumar
Research Paper

Abstract

This paper presents the procedures involved in constructing the diffusion bonding windows such as temperature–time and pressure–time diagrams for effective diffusion bonding of aluminium alloy and magnesium alloys. Empirical relationships were developed to predict the lap shear strength of diffusion bonded joints of aluminium (Al) alloy (AA6061) and magnesium (Mg) alloys (AZ31B, AZ61A, AZ80), incorporating diffusion bonding parameters such as bonding temperature, bonding pressure, holding time and surface roughness of the materials to be joined. Response surface methodology was applied to optimise the diffusion bonding parameters to attain the maximum shear strength of the joint. Relationship was established between weight percentage of Al content in Mg alloys and optimised diffusion bonding parameters. The developed processing windows can be used as reference maps to the design and welding engineers for selecting appropriate diffusion bonding parameters to get good quality bonds for Al and Mg alloys.

Keywords

Diffusion bonding Aluminium Magnesium Shear strength Microstructure 

Notes

Acknowledgments

The authors are grateful to the Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India for extending the facilities of metal joining and Material Testing to carry out this investigation. The authors also wish to express their sincere thanks to Dr. S. Rajakumar, Assistant Professor, Dept. of Manufacturing Engineering, Annamalai University for helping in statistical analysis.

References

  1. 1.
    Sun DQ, Gu XY, Liu WH (2005) Transient liquid phase bonding of magnesium alloy (Mg–3Al–1Zn) using aluminium interlayer. Mater Sci Eng A A391:29–33. doi: 10.1016/j.msea.2004.06.008 Google Scholar
  2. 2.
    Juan W, Li Y, Peng L, Haoran G (2008) Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding. J Mat Proc Tech 205:146–150. doi: 10.1016/j.jmatprotec.2007.11.096 CrossRefGoogle Scholar
  3. 3.
    Munitz A, Cotler C, Shaham H, Kohn G (2000) Electron beam welding of magnesium AZ91D plates. Weld J 79(7):202–208. doi: 10.1016/S0921-5093(00)01356-3 Google Scholar
  4. 4.
    Somekawa H, Watanabe H, Mukai T, Higashi K (2009) Low temp diffusion bounding in a super plastic AZ31 magnesium alloy. Scr Mater 48:1249–1254. doi: 10.1016/S1359-6462(03)00054-X CrossRefGoogle Scholar
  5. 5.
    Somekawa H, Watanabe H, Mukai T, Higashi K (2003) Diffusion bonding in super plastic Mg alloys. Mat Sci Engg A A339:328–333. doi: 10.1016/S0921-5093(02)00127-2 CrossRefGoogle Scholar
  6. 6.
    Atasoy E, Kahraman N (2008) Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 59:1481–1490. doi: 10.1016/j.matchar.2008.01.015 CrossRefGoogle Scholar
  7. 7.
    Ozdemir N, Aksoy M, Orhan N (2003) Effect of graphite shape in vacuum-free diffusion bonding of nodular cast iron with gray cast iron. J Mat Proc Tech 141(2):228–233. doi: 10.1016/S0924-0136(03)00154-7 CrossRefGoogle Scholar
  8. 8.
    Kundu S, Chatterjee S (2006) Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer 425(1–2):107–113. doi: 10.1016/j.msea.2006.03.034 Google Scholar
  9. 9.
    Ghosh M, Bhanumurthy K, Kale GB, Krishnan J, Chatterjee S (2003) Diffusion bonding of titanium to 304 stainless steel. J Nuc Mat 322(2–3):235–241. doi: 10.1016/j.jnucmat.2003.07.004 CrossRefGoogle Scholar
  10. 10.
    Yeh MS, Chuang TS (1995) Low pressure diffusion bonding of SAE 316 stainless steel by inserting a super plastic interlayer. Scr Met Mat 33(8):1277–1281. doi: 10.1016/0956-716X(95)00364-2 CrossRefGoogle Scholar
  11. 11.
    Feng JC, Zhang BG, Qian YY, He P (2002) Microstructure and strength of diffusion bonded joints of Ti Al base alloy to steel. Mat char 48:401–406. doi: 10.1016/S1044-5803(02)00319-4 CrossRefGoogle Scholar
  12. 12.
    Peterson KA, Dutta I, Chenb M (2004) Processing and characterization of diffusion-bonded Al–Si interfaces. J of Mat Proc Tech 145:99–108. doi: 10.1016/S0924-0136(03)00877-X CrossRefGoogle Scholar
  13. 13.
    Liu P, Li Y, Haoran G, Juan W (2006) Investigation of interfacial structure of Mg/Al vacuum diffusion-bonded joint. Vac 80:395–399. doi: 10.1016/j.vacuum.2005.07.002 CrossRefGoogle Scholar
  14. 14.
    Li Y, Liu P, Wang J, Ma H (2008) XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials. Vac 82:15–19. doi: 10.1016/j.vacuum.2007.01.073 CrossRefGoogle Scholar
  15. 15.
    Liu P, Li Y, Haoran G, Juan W (2005) A study of phase constitution near the interface of Mg/Al Vacuum diffusion bonding. Mat Let 59:2001–2005. doi: 10.1016/j.matlet.2005.02.038 CrossRefGoogle Scholar
  16. 16.
    Huang Y, Humphreys FJ, Ridley N, Wang ZC (1988) Diffusion bonding of hot rolled aluminium alloy. Mat Sci Tec 14:405–410. doi: 10.1179/026708398790301250 CrossRefGoogle Scholar
  17. 17.
    Mahendran G, Balasubramanian V, Senthilvelan T (2009) Developing diffusion bonding windows for joining AZ31B magnesium–AA2024 aluminium alloys. Mat Des 30:1240–1244. doi: 10.1016/j.matdes.2008.06.015 CrossRefGoogle Scholar
  18. 18.
    Mahendran G, Balasubramanian V, Senthilvelan T (2010) Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints. Trans of Non-Fer Met Soc of China 20:997–1005. doi: 10.1016/S1003-6326(09)60248-X CrossRefGoogle Scholar
  19. 19.
    Mahendran G, Balasubramanian V, Babu S (2010) Optimising diffusion bonding process parameters to attain maximum strength in Al–Cu dissimilar joints using response surface methodology. Int J of Man Res 5:181–198. doi: 10.1504/IJMR.2010.031631 CrossRefGoogle Scholar
  20. 20.
    Grum J, Slabe JM (2004) The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co–Mo surfaced layers. J Mat Proc Tech 155:2026–2032. doi: 10.1016/j.jmatprotec.2004.04.220 CrossRefGoogle Scholar
  21. 21.
    Mahendran G, Babu S, Balasubramanian V (2010) Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg–Al dissimilar joints. J of Mat Engg Perf 19:657–665. doi: 10.1007/s11665-009-9531-6 CrossRefGoogle Scholar
  22. 22.
    Zhao LM, Zhang ZD (2008) Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints. Scri Mat 58:283–286. doi: 10.1016/j.scriptamat.2007.10.006 CrossRefGoogle Scholar
  23. 23.
    Tien CL, Lin SW (2006) Optimization of process parameters of titanium dioxide films by response surface methodology. Opt Com 266:574–581. doi: 10.1016/j.optcom.2006.05.044 CrossRefGoogle Scholar
  24. 24.
    Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mat Proc Tech 88:266–275. doi: 10.1016/S0924-0136(98)00405-1 CrossRefGoogle Scholar
  25. 25.
    Lakshminarayanan AK, Balasubramaian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Tran of Non-Fer Met Soc of China 19: 9–18. doi: 10.1016/S1003-6326(08)60221-6

Copyright information

© International Institute of Welding 2013

Authors and Affiliations

  • V. Balasubramanian
    • 1
    Email author
  • M. Joseph Fernandus
    • 2
  • T. Senthilkumar
    • 3
  1. 1.Center for Materials Joining and Research (CEMAJOR), Department of Manufacturing EngineeringAnnamalai UniversityAnnamalainagarIndia
  2. 2.Department of Mechanical EngineeringSrinivasan Engineering CollegePerambalurIndia
  3. 3.Department of Mechanical EngineeringAnna University Chennai Tiruchirappalli RegionTiruchirappalliIndia

Personalised recommendations