Abstract
Functional graded materials (FGM) allow for reconciliation of conflicting design constraints at different locations in the material. This optimization requires a priori knowledge of how different architectural measures are interdependent and combine to control material performance. In this work, an aluminum FGM was used as a model system to present a new network modeling approach that captures the relationship between design parameters and allows an easy interpretation. The approach, in an un-biased manner, successfully captured the expected relationships and was capable of predicting the hardness as a function of composition.
This is a preview of subscription content, log in to check access.






References
- 1.
(2011) Materials genome initiative for global competitiveness. Tech. rep. https://www.mgi.gov/about
- 2.
Arnold SM, Holland F, Gabb TP, Nathal M, Wong TT (2013) American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2013-1850
- 3.
Arnold SM, Holland F, Bednarcyk BA (2014) American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2014-0460
- 4.
Miracle D, Majumdar B, Wertz K, Gorsse S (2017) Scr Mater 127(Supplement C):195. https://doi.org/10.1016/j.scriptamat.2016.08.001. http://www.sciencedirect.com/science/article/pii/S1359646216303657
- 5.
Lingerfelt EJ, Belianinov A, Endeve E, Ovchinnikov O, Somnath S, Borreguero JM, Grodowitz N, Park B, Archibald RK, Symons CT, Kalinin SV, Messer OEB, Shankar M, Jesse S (2016) Procedia computer science 80(Supplement C):2276. https://doi.org/10.1016/j.procs.2016.05.410. http://www.sciencedirect.com/science/article/pii/S1877050916308869
- 6.
Kalidindi SR, De Graef M (2015) Materials Data Science: Current Status and Future Outlook. Annu Rev Mater Res 45(1):171–193. https://doi.org/10.1146/annurev-matsci-070214-020844
- 7.
Jacobsen MD, Benedict MD, Foster BJ, Ward CH, Foster BJ, Jacobsen MD, Benedict MD (2015). In: Proceedings of the 3rd world congress on integrated computational materials engineering (ICME 2015). Springer, Cham, pp 285–292. https://doi.org/10.1007/978-3-319-48170-8_34. https://link.springer.com/chapter/10.1007/978-3-319-48170-8_34
- 8.
Jacobsen MD, Fourman JR, Porter KM, Wirrig EA, Benedict MD, Foster BJ, Ward CH, Jacobsen MD, Foster BJ, Fourman JR, Benedict MD, Porter KM, Wirrig EA (2016) Creating an integrated collaborative environment for materials research. Integr Mater Manuf Innov 5(1):12. https://doi.org/10.1186/s40192-016-0055-2. https://link.springer.com/article/10.1186/s40192-016-0055-2
- 9.
Havlin S, Kenett DY, Ben-Jacob E, Bunde A, Cohen R, Hermann H, Kantelhardt JW, Kertész J, Kirkpatrick S, Kurths J, Portugali J, Solomon S (2012) The European Physical Journal Special Topics 214(1):273. https://doi.org/10.1140/epjst/e2012-01695-x. http://link.springer.com/article/10.1140/epjst/e2012-01695-x
- 10.
Nibbe RK, Koyutürk M, Chance MR (2010) PLOs Comput Biol 6(1):e1000639. https://doi.org/10.1371/journal.pcbi.1000639
- 11.
Steinhaeuser K, Chawla NV, Ganguly AR (2011) Statistical Analysis and Data Mining 4(5):497. https://doi.org/10.1002/sam.10100. http://onlinelibrary.wiley.com/doi/10.1002/sam.10100/abstract
- 12.
Bhadeshia HKDH (1999) ISIJ Int 39(10):966. https://doi.org/10.2355/isijinternational.39.966
- 13.
Bhadeshia HKDH (2009) Neural Networks and Information in Materials Science. Statistical Analy Data Mining 1(5):296–305. https://doi.org/10.1002/sam.10018. http://onlinelibrary.wiley.com/doi/10.1002/sam.10018/abstract
- 14.
Sha W, Edwards KL (2007) Mater Des 28(6):1747. https://doi.org/10.1016/j.matdes.2007.02.009. http://www.sciencedirect.com/science/article/pii/S0261306907000520
- 15.
Hoyle RH (2012) Handbook of structural equation modeling, 1st edn. The Guilford Press, New York
- 16.
French RH, Podgornik R, Peshek TJ, Bruckman LS, Xu Y, Wheeler NR, Gok A, Hu Y, Hossain MA, Gordon DA, Zhao P, Sun J, Zhang G-Q (2015) Curr Opinion Solid State Mater Sci 19(4):212. https://doi.org/10.1016/j.cossms.2014.12.008. http://www.sciencedirect.com/science/article/pii/S1359028614000989
- 17.
Faraway JJ (2004) Linear models with R, 1st edn. Chapman and Hall/CRC, Boca Raton
- 18.
Wheeler N, Xu Y, Du W, Gok A, Ma J, Bruckman L, Elsaeiti M, Sun J, French R (2013) Semi-supervised generalized structural equation modeling. https://github.com/vuvlab/sgsem
- 19.
Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill Education, New York
- 20.
White H, Gallant AR, Hornik K, Stinchcombe M, Wooldridge J (1992) Artificial neural networks: approximation and learning theory, illustrated edition edition edn. Blackwell Pub, Oxford
- 21.
Skinner AJ, Broughton JQ (1995) Model Simul Mater Sci Eng 3(3):371. https://doi.org/10.1088/0965-0393/3/3/006. http://stacks.iop.org/0965-0393/3/i=3/a=006
- 22.
Rioja RJ, Sawtell RR, Chu MG, Karabin M, Cassada WA, Karabin M (2012) Functional Gradient Products Enabled by Planar Solidification Technologies. Springer, Pittsburgh, pp 1383–1388. https://link.springer.com/chapter/10.1007/978-3-319-48761-8_211. https://doi.org/10.1007/978-3-319-48761-8_211
- 23.
Chu M, Giron A, Cassada W (2012) The Minerals, Metals and Materials Society, Pittsburgh, pp 1367–1375
- 24.
Chu MG, Yu H, Giron A, Kallaher K (2007) Method of unidirectional solidification of castings and associated apparatus. http://www.google.com/patents/US7264038. U.S. Classification 164/122.1, 164/133, 164/337; International Classification B22D35/04, B22D27/04, B22D37/00, B22D35/00; Cooperative Classification B22D27/045, B22D7/00; European Classification B22D27/04A
- 25.
(2015) International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys. The Alumninum Association, Arlington, pp 38. http://www.aluminum.org/sites/default/files/TEAL_1_OL_2015.pdf
- 26.
Deshpande NU, Ray KK, Mallik AK (1986) 2:108. http://mio.asminternational.org/apd/viewPicture.aspx?dbKey=grantami_apd&id=10757508&revision=421381
- 27.
Balderach DC, Hamilton JA, Leung E, Cristina Tejeda M, Qiao J, Taleff EM (2003) Mater Sci Eng A 339(1–2):194. https://doi.org/10.1016/S0921-5093(02)00158-2. http://www.sciencedirect.com/science/article/pii/S0921509302001582
- 28.
Fleischer RL (1963) Acta Metallurgica 11(3):203. https://doi.org/10.1016/0001-6160(63)90213-X. http://www.sciencedirect.com/science/article/pii/000161606390213X
- 29.
Labusch R (1970) Phys Stat Sol (b) 41(2):659. https://doi.org/10.1002/pssb.19700410221. http://onlinelibrary.wiley.com/doi/10.1002/pssb.19700410221/abstract
- 30.
Orowan E (1948) Institute of metals, London, pp 451–453
- 31.
Guo Z, Sha W (2002) Mater Trans 43(No. 6):1273
- 32.
Hall EO (1951) Proc Phys Soc B 64(9):747. https://doi.org/10.1088/0370-1301/64/9/303. http://stacks.iop.org/0370-1301/64/i=9/a=303
- 33.
Petch NJ (1953) J Iron Steel Inst Jpn 174:25
- 34.
Tiryakioğlu M (2015) Materials science and engineering: A 633:17. https://doi.org/10.1016/j.msea.2015.02.073. http://www.sciencedirect.com/science/article/pii/S0921509315002014
- 35.
R Core Team (2015) R: a language and environment for statistical computing, R Foundation for Statistical Computin, Vienna. https://www.R-project.org/
- 36.
RPubs - Predictive R-squared according to Tom Hopper. https://rpubs.com/RatherBit/102428
- 37.
Bunge H (1970) Krist Techn 5:145. https://doi.org/10.1002/crat.19700050112
- 38.
Schmid E, Boas W (1968) Plasticity of crystals with special reference to metals. Chapman & Hall, London
- 39.
Bruckman LS, Wheeler NR, Ma J, Wang E, Wang CK, Chou I, Sun J, French RH (2013) IEEE Access 1:384. https://doi.org/10.1109/ACCESS.2013.2267611. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6527980
Acknowledgments
The material for this study was provided by the Alcoa/Arconic Alloy Technology Division. This work was funded by the Army Research Office Short Term Innovative Research program: W911NF-14-0549. The data and R-analytics code utilized for the paper can be found at https://cwru-msl.github.io/MRL17/.
Author information
Affiliations
Corresponding author
Rights and permissions
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Verma, A.K., French, R.H. & Carter, J.L.W. Physics-Informed Network Models: a Data Science Approach to Metal Design. Integr Mater Manuf Innov 6, 279–287 (2017). https://doi.org/10.1007/s40192-017-0104-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Metal design
- Network models
- Optimization
- Functional gradient materials