Software Platforms for Electronic/Atomistic/Mesoscopic Modeling: Status and Perspectives

  • Mikael Christensen
  • Volker Eyert
  • Arthur France-Lanord
  • Clive Freeman
  • Benoît Leblanc
  • Alexander Mavromaras
  • Stephen J Mumby
  • David Reith
  • David Rigby
  • Xavier Rozanska
  • Hannes Schweiger
  • Tzu-Ray Shan
  • Philippe Ungerer
  • René Windiks
  • Walter Wolf
  • Marianna Yiannourakou
  • Erich Wimmer
Thematic Section: 2nd International Workshop on Software Solutions for ICME

Abstract

Predicting engineering properties of materials prior to their synthesis enables the integration of their design into the overall engineering process. In this context, the present article discusses the foundation and requirements of software platforms for predicting materials properties through modeling and simulation at the electronic, atomistic, and mesoscopic levels, addressing functionality, verification, validation, robustness, ease of use, interoperability, support, and related criteria. Based on these requirements, an assessment is made of the current state revealing two critical points in the large-scale industrial deployment of atomistic modeling, namely (i) the ability to describe multicomponent systems and to compute their structural and functional properties with sufficient accuracy and (ii) the expertise needed for translating complex engineering problems into viable modeling strategies and deriving results of direct value for the engineering process. Progress with these challenges is undeniable, as illustrated here by examples from structural and functional materials including metal alloys, polymers, battery materials, and fluids. Perspectives on the evolution of modeling software platforms show the need for fundamental research to improve the predictive power of models as well as coordination and support actions to accelerate industrial deployment.

Keywords

Integrated computational materials engineering (ICME) Materials modeling Software Interoperability Industrial deployment Metal alloys Polymers Batteries Fluids 

References

  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  3. 3.
    Stewart JP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32CrossRefGoogle Scholar
  4. 4.
    Rozanska X, Stewart JJP, Ungerer P, Leblanc B, Freeman C, Saxe P, Wimmer E (2014) High-throughput calculations of molecular properties in the MedeA® environment: accuracy of PM7 in predicting vibrational frequencies, ideal gas entropies, heat capacities, and Gibbs free energies of organic molecules. J Chem Eng Data 59:3136–3143Google Scholar
  5. 5.
    Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, OxfordGoogle Scholar
  6. 6.
    Jorgensen WL (2002) OPLS force fields, Encyclopedia of computational chemistry, John Wiley & SonsGoogle Scholar
  7. 7.
    Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comp Chem 15:162–182CrossRefGoogle Scholar
  8. 8.
    Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  9. 9.
    Daw MS, Baskes M (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453CrossRefGoogle Scholar
  10. 10.
    Lewis GV, Catlow CRA (1985) Potential models for ionic oxides. J Phys C Solid State Phys 18:1149–1161CrossRefGoogle Scholar
  11. 11.
    Lerch D, Wieckhorst O, Hart GLW, Forcade RW, Müller S (2009) UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input. Modelling Simul in Mater Sci Eng 17:055003 and references thereinCrossRefGoogle Scholar
  12. 12.
    Sanchez JM, Ducastelle F, Gratias D (1984) Generalized cluster description of multicomponent systems. Physica A 128:334–350CrossRefGoogle Scholar
  13. 13.
    Schmitz GJ, Prahl U (2016) Handbook of software solutions for ICME. John Wiley & SonsGoogle Scholar
  14. 14.
    Macher M, Klimeš FC, Kresse G (2014) The random phase approximation applied to ice. J Chem Phys 140:084502-1–084502-10CrossRefGoogle Scholar
  15. 15.
    Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Critical Reviews in Solid State and Materials Sciences 39:1–24CrossRefGoogle Scholar
  16. 16.
    Gladden JR, So JH, Maynard JD, Saxe PW, Le Page Y (2004) Reconciliation of ab initio theory and experimental elastic properties of Al2O3. Appl Phys Lett 85:392–394CrossRefGoogle Scholar
  17. 17.
    Geller CB, Wolf W, Picozzi S, Continenza A, Asahi R, Mannstadt W, Freeman AJ, Wimmer E (2001) Computational band-structure engineering of III-V semiconductor alloys. Appl Phys Lett 79:368–370CrossRefGoogle Scholar
  18. 18.
    NoMaD (Novel Materials Discovery) http://nomad-repository.eu/cms/. Accessed 14 November 2016
  19. 19.
    Lejaeghere K, Bihlmayer G, Bjorkman T et al. (2016) Reproducibility in density functional theory calculations of solids. Science 351:6280Google Scholar
  20. 20.
    Gaussian G09 (2016) http://www.gaussian.com/. Accessed 14 November 2016
  21. 21.
    Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comp Mater Sci 111:218–230CrossRefGoogle Scholar
  22. 22.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M (2009) J Phys: Condens Matter 21 395502. doi:10.1088/0953-8984/21/39/395502
  23. 23.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and s calable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477CrossRefGoogle Scholar
  24. 24.
    Mostofi AA, Yates JR, Lee YS, Souza I, Vanderbilt D, Marzari N (2008) Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun 178:685CrossRefGoogle Scholar
  25. 25.
    Mostofi AA, Yates JR, Pizzi G, Lee YS, Souza I, Vanderbilt D, Marzari N (2014) An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun 185:2309CrossRefGoogle Scholar
  26. 26.
    Gražulis S, Chateigner D, Downs RT, Yokochi AFT, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729CrossRefGoogle Scholar
  27. 27.
    Gražulis S, Daskevic A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40. doi:10.1093/nar/gkr900
  28. 28.
    MedeA® – Materials Exploration and Design Analysis (2016) Materials Design, Inc. www.materialsdesign.com
  29. 29.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  31. 31.
    EMMC-CSA (2016) European Materials Modelling Council – Coordination and Support Action. European Commission, Directorate-General for Research & Innovation, Industrial Technologies, Advanced Materials and Nanotechnologies Grant number 723867Google Scholar
  32. 32.
    Christensen M, Angeliu TM, Ballard JD, Vollmer J, Najafabadi R, Wimmer E (2010) Effect of impurity and alloying elements on Zr grain boundary strength from first-principles computations. J Nucl Mater 404:121–127CrossRefGoogle Scholar
  33. 33.
    Christensen M, Wolf W, Freeman C, Wimmer E, Adamson RB, Hallstadius L, Cantonwine PE, Mader EV (2014) Effect of alloying elements on the properties of Zr and the Zr-H system. J Nucl Mater 445:241–250CrossRefGoogle Scholar
  34. 34.
    Sundell G, Thuvander M, Tejland P, Dahlbäck M, Hallstadius L, Andrén H-O (2014) Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure. J Nucl Mater 454:178–185CrossRefGoogle Scholar
  35. 35.
    Rigby D, Saxe P, Freeman C, Leblanc B (2014) Computational prediction of mechanical properties of glassy polymer blends and thermosets, in Advanced Composites for Aerospace, Marine and Land Applications, Sano T, Srivatsan TS, Paretti MW (eds.) John Wiley; ISBN 8791118888919Google Scholar
  36. 36.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19CrossRefGoogle Scholar
  37. 37.
    Suter UW, Eichinger BE (2002) Estimating elastic constants by averaging over simulated structures. Polymer 43:575–582CrossRefGoogle Scholar
  38. 38.
    White SR, Mather PT, Smith MJ (2002) Characterization of the cure-state of DGEBA-DDS epoxy using ultrasonic, dynamical, and thermal probes. Polyer Eng Sci 42:51–67CrossRefGoogle Scholar
  39. 39.
    Behzadi S, Jones FR (2005) Yielding behavior of model epoxy matrices for fiber reinforced composites: effect of strain rate and temperature. J Macromol Sci B 44:993–1005CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 77:3865 ibid. Erratum. Phys Rev Lett 78:1396CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406 (2008); ibid. (2009) Erratum. Phys Rev Lett 102:039902CrossRefGoogle Scholar
  42. 42.
    Rosciano F, Christensen M, Eyert V, Mavromaras A, Wimmer E (2014) Reduced strain cathode materials for solid state lithium ion batteries. International Patent Publication Number WO2014191018 A1Google Scholar
  43. 43.
    Yiannourakou M, Ungerer P, Leblanc B, Ferrando N, Teuler J-M (2013) Overview of MedeA®-GIBBS capabilities for thermodynamic property calculation and VLE behavior description of pure compounds and mixtures: application to polar compounds generated from lingo-cellulosic biomass. Mol Simul 39:1165–1211Google Scholar
  44. 44.
    Mackie AD, Tavitian B, Boutin A, Fuchs AH (1997) Vapour-liquid phase equilibria predictions of methane–alkane mixtures by Monte Carlo simulation. Mol Simul 19:1–15CrossRefGoogle Scholar
  45. 45.
    Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826CrossRefGoogle Scholar
  46. 46.
    Ungerer P, Beauvais C, Delhommelle J, Boutin A, Rousseau B, Fuchs A (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys 112:5499–5510CrossRefGoogle Scholar
  47. 47.
    Wick CD, Martin MG, Siepmann JI (2000) Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J Phys Chem B 104:8008–8016CrossRefGoogle Scholar
  48. 48.
    Bourasseau E, Ungerer P, Boutin A, Fuchs AH (2002) Monte Carlo simulation of branched alkanes and long chain n-alkanes with anisotropic united atoms intermolecular potential. Mol Sim 28:317–336CrossRefGoogle Scholar
  49. 49.
    Bourasseau E, Ungerer P, Boutin A (2002) Prediction of equilibrium properties of cyclic alkanes by Monte Carlo simulation—new anisotropic united atoms potential—new transfer bias method. J Phys Chem B 106:5483–5491CrossRefGoogle Scholar
  50. 50.
    Bourasseau E, Haboudou M, Boutin A, Fuchs AH, Ungerer P (2003) New optimization method for intermolecular potentials: optimization of a new anisotropic united atoms potential for olefins: prediction of equilibrium properties. J Chem Phys 118:3020–3034CrossRefGoogle Scholar
  51. 51.
    Ferrando N, Lachet V, Teuler J-M, Boutin A (2009) Transferable force field for alcohols and polyalcohols. J Phys Chem 113:5985–5995CrossRefGoogle Scholar
  52. 52.
    Ferrando N, Lachet V, Pérez-Pellitero J, Mackie AD, Malfreyt P, Boutin A (2011) A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers. J Phys Chem B 115:10654–10664CrossRefGoogle Scholar
  53. 53.
    Ferrando N, Lachet V, Boutin A (2012) Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction. J Phys Chem B 116:3239–3248CrossRefGoogle Scholar
  54. 54.
    Ferrando N, Gedik I, Lachet V, Pigeon L, Lugo R (2013) Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations. J Phys Chem 117:7123–7132CrossRefGoogle Scholar
  55. 55.
    Pérez-Pellitero J, Bourasseau E, Demachy I, Ridard J, Ungerer P, Mackie AD (2008) Anisotropic united-atoms (AUA) potential for alcohols. J Phys Chem B 112:9853–9863CrossRefGoogle Scholar
  56. 56.
    Toxvaerd SR (1990) Molecular dynamics calculation of the equation of state of alkanes. J Chem Phys 93:4290–4295CrossRefGoogle Scholar
  57. 57.
    Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFeNiFe multilayers. Phys Rev B 69:144113CrossRefGoogle Scholar
  58. 58.
    Gloor GJ, Jackson G, Blas FJ, de Miguel E (2005) Test-area method for the direct determination of the interfacial tension of systems with discontinuous potentials. J Chem Phys 123:134703CrossRefGoogle Scholar
  59. 59.
    Goujon F, Malfreyt P, Boutin A, Fuchs AH (2001) Vapour-liquid phase equilibria of n-alkanes by direct Monte Carlo simulations. Mol Simul 27:99–114CrossRefGoogle Scholar
  60. 60.
    Ibergay C, Ghoufi A, Goujon F, Ungerer P, Boutin A, Rousseau B, Malfreyt P (2007) Molecular simulations of the n-alkane liquid-vapor interface: interfacial properties and their long range corrections. Phys Rev E 75:051602CrossRefGoogle Scholar
  61. 61.
    Vega C, de Miguel E (2007) Surface tension of the most popular models of water using the test-area simulation method. J Phys Chem 126:154707CrossRefGoogle Scholar
  62. 62.
    Taihei M, Hidetoshi F, Takaharu U, Masayoshi K, Kiyoshi K (2005) Surface tension measurement of molten metal using a falling droplet in a short tube. Transactions JWRI 34:29Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Mikael Christensen
    • 1
  • Volker Eyert
    • 1
  • Arthur France-Lanord
    • 1
  • Clive Freeman
    • 2
  • Benoît Leblanc
    • 1
  • Alexander Mavromaras
    • 1
  • Stephen J Mumby
    • 3
  • David Reith
    • 1
  • David Rigby
    • 3
  • Xavier Rozanska
    • 1
  • Hannes Schweiger
    • 3
  • Tzu-Ray Shan
    • 3
  • Philippe Ungerer
    • 1
  • René Windiks
    • 1
  • Walter Wolf
    • 1
  • Marianna Yiannourakou
    • 1
  • Erich Wimmer
    • 1
    • 3
  1. 1.Materials Design s.a.r.l.MontrougeFrance
  2. 2.Materials Design, Inc.Angel FireUSA
  3. 3.Materials Design, Inc.San DiegoUSA

Personalised recommendations