A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations

  • Martin Diehl
  • Philip Eisenlohr
  • Chen Zhang
  • Jennifer Nastola
  • Pratheek Shanthraj
  • Franz Roters
Thematic Section: 2nd International Workshop on Software Solutions for ICME
  • 142 Downloads

Abstract

Modern high-performing structural materials gain their excellent properties from the complex interactions of various constituent phases, grains, and subgrain structures that are present in their microstructure. To further understand and improve their properties, simulations need to take into account multiple aspects in addition to the composite nature. Crystal plasticity simulations incorporating additional physical effects such as heat generation and distribution, damage evolution, phase transformation, or changes in chemical composition enable the compilation of comprehensive structure–property relationships of such advanced materials under combined thermo-chemo-mechanical loading conditions. Capturing the corresponding thermo-chemo-mechanical response at the microstructure scale usually demands specifically adopted constitutive descriptions per phase. Furthermore, to bridge from the essential microstructure scale to the component scale, which is often of ultimate interest, a sophisticated (computational) homogenization scheme needs to be employed. A modular simulation toolbox that allows the problem-dependent use of various constitutive models and/or homogenization schemes in one concurrent simulation requires a flexible and adjustable file format to store the resulting heterogeneous data. Besides dealing with heterogeneous data, a file format suited for microstructure simulations needs to be able to deal with large (and growing) amounts of data as (i) the spatial resolution of routine simulations is ever increasing and (ii) more and more quantities are taken into account to characterize a material. To cope with such demands, a flexible and adjustable data layout based on HDF5 is proposed. The key feature of this data structure is the decoupling of spatial position and data, such that spatially variable information can be efficiently accommodated. For position-dependent operations, e.g., spatially resolved visualization, the spatial link is restored through explicit mappings between simulation results and their spatial position.

Keywords

Crystal plasticity Heterogeneous data Microstructures HDF5 XDMF DAMASK 

Supplementary material

40192_2017_84_MOESM1_ESM.hdf5 (25.2 mb)
(HDF5 25.2 MB)

References

  1. 1.
    Folk M, Heber G, Koziol Q, Pourmal E, Robinson D (2011) An overview of the HDF5 technology suite and its applications, pp 36–47. doi:10.1145/1966895.1966900
  2. 2.
    Schmitz GJ (2016) Microstructure modeling in integrated computational materials engineering (ICME) settings: can HDF5 provide the basis for an emerging standard for describing microstructures?. JOM 68(1):77–83. doi:10.1007/s11837-015-1748-2 CrossRefGoogle Scholar
  3. 3.
    Roters F, Eisenlohr P, Kords C, Tjahjanto DD, Diehl M, Raabe D (2012) DAMASK: the Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. In: Cazacu O (ed) Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties. doi:10.1016/j.piutam.2012.03.001, vol 3. Elsevier, Amsterdam, pp 3–10
  4. 4.
    Jackson MA, Groeber MA, Uchic MD, Rowenhorst DJ, De Graef M (2014) h5ebsd: an archival data format for electron back-scatter diffraction data sets. Integr Mater Manuf Innov 3 (1):4. doi:10.1186/2193-9772-3-4 CrossRefGoogle Scholar
  5. 5.
    Groeber MA, Jackson MA (2014) DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):5. doi:10.1186/2193-9772-3-5 CrossRefGoogle Scholar
  6. 6.
    Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit, 4th edn, KitwareGoogle Scholar
  7. 7.
    Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D (2014) Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations. Int J Plast 63:198–210. doi:10.1016/j.ijplas.2014.06.004 CrossRefGoogle Scholar
  8. 8.
    Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318:1417–1423Google Scholar
  9. 9.
    Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53. doi:10.1016/j.ijplas.2012.09.012 CrossRefGoogle Scholar
  10. 10.
    Alankar A, Eisenlohr P, Raabe D (2011) A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium. Acta Mater 59(18):7003–7009. doi:10.1016/j.actamat.2011.07.053 CrossRefGoogle Scholar
  11. 11.
    Wang H, Wu PD, Wang J, Tomé C.N. (2013) A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int J of Plast 49:36–52. doi:10.1016/j.ijplas.2013.02.016 CrossRefGoogle Scholar
  12. 12.
    Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976. doi:10.1016/0001-6160(83)90014-7 CrossRefGoogle Scholar
  13. 13.
    Shanthraj P, Sharma L, Svendsen B, Roters F, Raabe D (2016) A phase field model for damage in elasto-viscoplastic materials. Computer Methods in Applied Mechanics and Engineering 312:167–185. doi:10.1016/j.cma.2016.05.006 CrossRefGoogle Scholar
  14. 14.
    Tjahjanto DD, Eisenlohr P, Roters F (2010) A novel grain cluster-based homogenization scheme. Model Simul Mater Sci Eng 18:015006. doi:10.1088/0965-0393/18/1/015006 CrossRefGoogle Scholar
  15. 15.
    Tjahjanto DD, Eisenlohr P, Roters F (2015) Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Model Simul Mater Sci Eng 23:045005. doi:10.1088/0965-0393/23/4/045005 CrossRefGoogle Scholar
  16. 16.
    Eisenlohr P, Roters F (2008) Selecting sets of discrete orientations for accurate texture reconstruction. Comput Mater Sci 42(4):670–678. doi:10.1016/j.commatsci.2007.09.015 CrossRefGoogle Scholar
  17. 17.
    Ma A, Roters F, Raabe D (2007) A dislocation density based consitutive law for BCC materials in crystal plasticity FEM. Comput Mater Sci 39:91–95. doi:10.1016/j.commatsci.2006.04.014 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Martin Diehl
    • 1
  • Philip Eisenlohr
    • 2
  • Chen Zhang
    • 2
  • Jennifer Nastola
    • 1
  • Pratheek Shanthraj
    • 1
  • Franz Roters
    • 1
  1. 1.Microstructure Physics and Alloy DesignMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations