Advertisement

Drawing a Strategy Canvas Using the Fuzzy Best–Worst Method

  • Ehsan Khanmohammadi
  • Mostafa ZandiehEmail author
  • Talieh Tayebi
Original Research
  • 62 Downloads

Abstract

Blue ocean strategy is a new approach to strategy-making and innovation with the aim of sustained performance and growth of the company. In this approach, an analytical and decision-making tool known as Strategy Canvas is introduced in order to create blue oceans and to innovate value. Strategy Canvas provides a basic framework for taking into account all competitive and key factors in the current industry. In this study, the proposed fuzzy best–worst method is employed as a multi-criteria decision-making method to map Strategy Canvas of a manufacturing company in Iran. The proposed method is concerned with the proposition of a new approach to eliciting the weight vector from the fuzzy pairwise comparison matrices. For this purpose, a nonlinear optimization model was proposed. After solving the model, crisp weights were extracted from the fuzzy pairwise comparison matrices. The proposed method was an execution of the best–worst method in a fuzzy environment. This method is able to carry out fewer and more consistent comparisons. This method is also capable of substituting the fuzzy AHP method.

Keywords

Fuzzy best–worst method Multi-criteria decision analysis Strategy Canvas 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflicts of interest.

References

  1. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.CrossRefGoogle Scholar
  2. Bernoulli, D. (1738). Specimen Theoriae Novae de Mensura Sortis. Commentarri Academiae Scientiarum Imperialis Petropolitanae, 5, 175–192.Google Scholar
  3. Bourletidis, D. (2014). The strategic model of innovation clusters: Implementation of blue ocean strategy in a typical Greek region. Procedia-Social and Behavioral Sciences, 148, 645–652.CrossRefGoogle Scholar
  4. Brans, J. P., & Vincke, P. (1985). A preference ranking organization method. Management Science, 31(6), 647–656.CrossRefGoogle Scholar
  5. Brauers, W. K. M., Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2008). Multi-objective contractor’s ranking by applying the Moora method. Journal of Business Economics and Management, 9(4), 245–255.CrossRefGoogle Scholar
  6. Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247.CrossRefGoogle Scholar
  7. Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655.CrossRefGoogle Scholar
  8. Chang, S.-C. (2010). Bandit cellphones: A blue ocean strategy. Technology in Society, 32(3), 219–223.CrossRefGoogle Scholar
  9. Cheng, C.-H. (1997). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343–350.CrossRefGoogle Scholar
  10. Cheng, C.-H. (1999). Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems, 107(1), 25–35.CrossRefGoogle Scholar
  11. Dubois, D. J. (1980). Fuzzy sets and systems: Theory and applications (Vol. 144). Cambridge: Academic Press.Google Scholar
  12. Hollensen, S. (2013). The Blue Ocean that disappeared–the case of Nintendo Wii. Journal of Business Strategy, 34(5), 25–35.CrossRefGoogle Scholar
  13. Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58–191). Springer.Google Scholar
  14. Kamal, A. H., & Dionne-Odom, J. N. (2016). A Blue Ocean strategy for palliative care: Focus on family caregivers. Journal of Pain and Symptom Management, 51(3), e1–e3.CrossRefGoogle Scholar
  15. Kauffman, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic, theory and application. New York: Van Nostrand Reinhold.Google Scholar
  16. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value trade-offs. Cambridge University Press.Google Scholar
  17. Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258.CrossRefGoogle Scholar
  18. Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451.CrossRefGoogle Scholar
  19. Kickert, W. J. M. (1979). Fuzzy theories on decision making: A critical review (Vol. 3). Berlin: Springer Science & Business Media.Google Scholar
  20. Kim, W. C., & Mauborgne, R. (2005). Blue ocean strategy: From theory to practice. California Management Review, 47(3), 105–121.CrossRefGoogle Scholar
  21. Kumar, A., & Dash, M. K. (2017). Using fuzzy Delphi and generalized fuzzy TOPSIS to evaluate technological service flexibility dimensions of internet malls. Global Journal of Flexible Systems Management, 18(2), 153–161.CrossRefGoogle Scholar
  22. Lindič, J., Bavdaž, M., & Kovačič, H. (2012). Higher growth through the blue ocean strategy: Implications for economic policy. Research Policy, 41(5), 928–938.CrossRefGoogle Scholar
  23. Mikhailov, L. (2003). Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets and Systems, 134(3), 365–385.CrossRefGoogle Scholar
  24. Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5–21.Google Scholar
  25. Pawlak, Z. (1982). Rough sets. International Journal of Parallel Programming, 11(5), 341–356.Google Scholar
  26. Pawlak, Z., & Słowinski, R. (1994). Decision analysis using rough sets. International Transactions in Operational Research, 1(1), 107–114.CrossRefGoogle Scholar
  27. Porter, M. E. (1990). The competitive advantage of nations. Harvard Business Review, 68(2), 73–93.Google Scholar
  28. Rebón, F., Ocariz, G., Gerrikagoitia, J. K., & Alzua-Sorzabal, A. (2015). Discovering insights within a blue ocean based on business intelligence. Procedia-Social and Behavioral Sciences, 175, 66–74.CrossRefGoogle Scholar
  29. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57.CrossRefGoogle Scholar
  30. Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue Française d’informatique et de Recherche Opérationnelle, 2(8), 57–75.CrossRefGoogle Scholar
  31. Roy, B. (1971). Problems and methods with multiple objective functions. Mathematical Programming, 1(1), 239–266.CrossRefGoogle Scholar
  32. Roy, B. (1978). ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers Du CERO, 20(1), 3–24.Google Scholar
  33. Roy, B., & Bertier, P. (1973). La Méthode ELECTRE II(Une application au média-planning...).Google Scholar
  34. Ruoning, X., & Xiaoyan, Z. (1996). Fuzzy logarithmic least squares ranking method in analytic hierarchy process. Fuzzy Sets and Systems, 77(2), 175–190.CrossRefGoogle Scholar
  35. Saaty, T. L. (1972). An eigenvalue allocation model for prioritization and planning. In Energy management and policy center, University of Pennsylvania (pp. 28–31).Google Scholar
  36. Saaty, T. A. (1992). Decision-making for leaders (2nd ed.). Pittsburgh: RWS Publication.Google Scholar
  37. Saaty, T. L. (1996). The analytic network process. Pittsburgh: RWS Publications.Google Scholar
  38. Sharma, V., Seth, P., & Niyazi, S. (2012). Blue Ocean strategy: A vehicle for entrepreneurship. Advancing technologies for Asian business and economics: information management developments (p 198).Google Scholar
  39. Shojaie, A. A., Babaie, S., Sayah, E., & Mohammaditabar, D. (2018). Analysis and prioritization of green health suppliers using Fuzzy ELECTRE method with a case study. Global Journal of Flexible Systems Management, 19(1), 39–52.CrossRefGoogle Scholar
  40. Sushil. (2017). Small steps for a giant leap: Flexible organization. Global Journal of Flexible Systems Management, 18(4), 273–274.  https://doi.org/10.1007/s40171-017-0163-7.CrossRefGoogle Scholar
  41. Sushil. (2018). Interpretive multi-criteria ranking of production systems with ordinal weights and transitive dominance relationships. Annals of Operations Research.  https://doi.org/10.1007/s10479-018-2946-4.Google Scholar
  42. Sushil., & Chroust, G. (2014). Systemic flexibility and business agility. Berlin: Springer.Google Scholar
  43. Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1), 199–227.Google Scholar
  44. Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior, 2nd rev.Google Scholar
  45. Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  46. Wang, Y.-M., & Chin, K.-S. (2008). A linear goal programming priority method for fuzzy analytic hierarchy process and its applications in new product screening. International Journal of Approximate Reasoning, 49(2), 451–465.  https://doi.org/10.1016/j.ijar.2008.04.004.CrossRefGoogle Scholar
  47. Wang, Y.-M., Elhag, T. M. S., & Hua, Z. (2006). A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process. Fuzzy Sets and Systems, 157(23), 3055–3071.CrossRefGoogle Scholar
  48. Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International Journal of Production Economics, 107(1), 151–163.CrossRefGoogle Scholar
  49. Wang, Y.-M., & Chin, K.-S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541–553.CrossRefGoogle Scholar
  50. Xu, X. (2001). The SIR method: A superiority and inferiority ranking method for multiple criteria decision making. European Journal of Operational Research, 131(3), 587–602.CrossRefGoogle Scholar
  51. Yang, J. (2012). Identifying the attributes of blue ocean strategies in hospitality. International Journal of Contemporary Hospitality Management, 24(5), 701–720.CrossRefGoogle Scholar
  52. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.CrossRefGoogle Scholar
  53. Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172.CrossRefGoogle Scholar
  54. Zavadskas, E. K., Kaklauskas, A., & Sarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1(3), 131–139.Google Scholar
  55. Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6), 3–6.CrossRefGoogle Scholar
  56. Zimmermann, H. J. (1985). Fuzzy set theory and its applications. International series in management science/Operations research. Dordrecht: Kluwer-Nijhoff Publishing.CrossRefGoogle Scholar
  57. Zimmermann, H.-J. (2012). Fuzzy sets, decision making, and expert systems (Vol. 10)). Berlin: Springer Science & Business Media.Google Scholar

Copyright information

© Global Institute of Flexible Systems Management 2018

Authors and Affiliations

  1. 1.Department of Industrial Management, Faculty of ManagementUniversity of TehranTehranIran
  2. 2.Department of Industrial Management, Management and Accounting Faculty, G.C.Shahid Beheshti UniversityTehranIran

Personalised recommendations