Advertisement

Journal of Advanced Ceramics

, Volume 8, Issue 4, pp 519–526 | Cite as

Ba substitution for enhancement of the thermoelectric properties of LaCoO3 ceramics (0⩽x⩽0.75)

  • Mohamed Ali Bousnina
  • Fabien Giovannelli
  • Loïc Perriere
  • Guillaume Guegan
  • Fabian DelormeEmail author
Open Access
Research Article
  • 19 Downloads

Abstract

In the present work, dense perovskite ceramics were successfully prepared from a series of La1–xBaxCoO3 solid solutions in the range of substitution 0 ⩽ x ⩽ 0.75 using solid state reaction and conventional sintering. Structural properties of La1–xBaxCoO3 were systematically investigated and thermoelectric properties were measured in the temperature range of 330–1000 K. The results show that the thermoelectric properties of Ba-substituted LaCoO3 depend on x. Indeed, at 330 K, electrical conductivity presents an optimum value for x = 0.25 with a value of σmax ≈ 2.2×105 S·m−1 whereas the Seebeck coefficient decreases when x and/or the temperature increases. The Ba-substituted LaCoO3 samples exhibit p-type semiconducting behaviour. The best power factor value found is 3.4×10−4 W·m−1·K−2 at 330 K for x = 0.075, which is 10% higher than the optimum value measured in La1–xSrxCoO3 for x = 0.05. The thermal diffusivity and thermal conductivity increase with increasing temperature and Ba concentration. La1–xBaxCoO3 shows a maximum figure of merit (ZT = 0.048) for x = 0.05 at 330 K, 25% higher than the best value in La1−xSrxCoO3 compounds.

Keywords

perovskite Ba-substituted LaCoO3 oxide thermoelectric p-type semiconductor 

Notes

Acknowledgements

The authors acknowledge Programme d’Investissment d’Avenir PIA “Tours 2015” for the financial support.

References

  1. [1]
    Radaelli PG, Cheong SW. Structural phenomena associated with the spin-state transition InLaCoO3. Phys Rev B 2002, 66: 094408.CrossRefGoogle Scholar
  2. [2]
    Maris G, Ren Y, Volotchaev V, et al. Evidence for orbital ordering InLaCoO3. Phys Rev B 2003, 67: 224423.CrossRefGoogle Scholar
  3. [3]
    Knížek K, Jirák Z, Hejtmánek J, et al. Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur Phys J B 2005, 47: 213–220.CrossRefGoogle Scholar
  4. [4]
    Zobel C, Kriener M, Bruns D, et al. Evidence for a low-spin to intermediate-spin state transition InLaCoO3. Phys Rev B 2002, 66: 020402.CrossRefGoogle Scholar
  5. [5]
    Sazonov AP, Troyanchuk IO, Gamari-Seale H, et al. Neutron diffraction study and magnetic properties of La1−xBaxCoO3 (x = 0.2 and 0.3). J Phys: Condens Matter 2009, 21: 156004.Google Scholar
  6. [6]
    Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 1997, 56: R12685–R12687.CrossRefGoogle Scholar
  7. [7]
    Li SW, Funahashi R, Matsubara I, et al. High temperature thermoelectric properties of oxide Ca9Co12O28. J Mater Chem 1999, 9: 1659–1660.CrossRefGoogle Scholar
  8. [8]
    Masset AC, Michel C, Maignan A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 2000, 62: 166–175.CrossRefGoogle Scholar
  9. [9]
    Delorme F, Martin CF, Marudhachalam P, et al. Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd 2011, 509: 2311–2315.CrossRefGoogle Scholar
  10. [10]
    Saini S, Yaddanapudi HS, Tian K, et al. Terbium ion doping in Ca3Co4O9: A step towards high-performance thermoelectric materials. Sci Rep 2017, 7: 44621.CrossRefGoogle Scholar
  11. [11]
    Delorme F, Diaz-Chao P, Giovannelli F. Effect of Ca substitution by Fe on the thermoelectric properties of Ca3Co4O9 ceramics. J Electroceram 2018, 40: 107–114.CrossRefGoogle Scholar
  12. [12]
    Yamauchi H, Sakai K, Nagai T, et al. Parent of misfit-layered cobalt oxides: [Sr2O2]qCoO2. Chem Mater 2006, 18: 155–158.CrossRefGoogle Scholar
  13. [13]
    Funahashi R, Shikano M. Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl Phys Lett 2002, 81: 1459–1461.CrossRefGoogle Scholar
  14. [14]
    Diez JC, Guilmeau E, Madre MA, et al. Improvement of Bi2Sr2Co1.8Ox thermoelectric properties by laser floating zone texturing. Solid State Ionics 2009, 180: 827–830.CrossRefGoogle Scholar
  15. [15]
    Madre MA, Costa FM, Ferreira NM, et al. High thermoelectric performance in Bi2-xPbxBa2Co2Oy promoted by directional growth and annealing. J Eur Ceram Soc 2016, 36: 67–74.CrossRefGoogle Scholar
  16. [16]
    Funahashi R, Barbier T. Thermoelectric properties of (BaCoO3-y)nBaCo8O11. AIP Conf Proc 2016, 1763: 030004.CrossRefGoogle Scholar
  17. [17]
    Delorme F, Chen C, Pignon B, et al. Promising high temperature thermoelectric properties of dense Ba2Co9O14 ceramics. J Eur Ceram Soc 2017, 37: 2615–2620.CrossRefGoogle Scholar
  18. [18]
    Cong C, Delorme F, Schoenstein F, et al. Synthesis, sintering, and thermoelectric properties of Con−xMxO(M = Na, 0 ⩽ x ⩽ 0.07; M = Ag, 0 ⩽ x ⩽ 0.05). J Eur Ceram Soc 2019, 39: 346–351.CrossRefGoogle Scholar
  19. [19]
    Androulakis J, Migiakis P, Giapintzakis J. La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl Phys Lett 2004, 84: 1099–1101.CrossRefGoogle Scholar
  20. [20]
    Zhang X, Li XM, Tong LC, et al. Thermoelectric and transport properties of La0.95Sr0.05CoO3. J Cryst Growth 2006, 286: 1–5.CrossRefGoogle Scholar
  21. [21]
    Kozuka H, Yamada H, Hishida T, et al. Electronic transport properties of the perovskite-type oxides La1−xSrxCoOδ. J Mater Chem 2012, 22: 20217–20222.CrossRefGoogle Scholar
  22. [22]
    Papageorgiou C, Athanasopoulos GI, Kyratsi T, et al. Influence of processing conditions on the thermoelectric properties of La1-xSrxCoO3(x=0, 0.05). AIP Conf Proc 2012, 1449: 323–326.CrossRefGoogle Scholar
  23. [23]
    Bousnina MA, Dujardin R, Perriere L, et al. Synthesis, sintering, and thermoelectric properties of the solid solution La1−xSrxCoOδ (0 ⩽ x ⩽ 1). J Adv Ceram 2018, 7: 160–168.CrossRefGoogle Scholar
  24. [24]
    Muta K, Kobayashi Y, Asai K. Magnetic, electronic transport, and calorimetric investigations of La1-xCaxCoO3 in comparison with La1-xSrxCoO3. J Phys Soc Jpn 2002, 71: 2784–2791.CrossRefGoogle Scholar
  25. [25]
    Masuda H, Fujita T, Miyashita T, et al. Transport and magnetic properties of R1-xAxCoO3(R = La, Pr and Nd; A = Ba, Sr and Ca). J Phys Soc Jpn 2003, 72: 873–878.CrossRefGoogle Scholar
  26. [26]
    Kozuka H, Yamagiwa K, Ohbayashi K, et al. Origin of high electrical conductivity in alkaline-earth doped LaCoO3. J Mater Chem 2012, 22: 11003–11005.CrossRefGoogle Scholar
  27. [27]
    Sánchez RD, Mira J, Rivas J, et al. Magnetoresistance, temporal evolution, and relaxation of the electrical resistivity in the re-entrant semiconducting La0.80Ba0.20CoO3 perovskite. J Mater Res 1999, 14: 2533–2539.CrossRefGoogle Scholar
  28. [28]
    Barman A, Ghosh M, De SK, et al. Electrical transport properties of bulk La1-xBaxCoO3 at low temperature. Phys Lett 1997, 234: 384–390.CrossRefGoogle Scholar
  29. [29]
    Patil SB, Keer HV, Chakrabarty DK. Structural, electrical, and magnetic properties in the system BaxLa1−xCoO3. Phys Stat Sol (a) 1979, 52: 681–686.CrossRefGoogle Scholar
  30. [30]
    Khalil MS. Synthesis, X-ray, infrared spectra and electrical conductivity of La/Ba−CoO3 systems. Mater Sci Eng 2003, 352: 64–70.CrossRefGoogle Scholar
  31. [31]
    Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 1993, 192: 55–69.CrossRefGoogle Scholar
  32. [32]
    Closset NMLNP, Van Doorn RHE, Kruidhof H, et al. About the crystal structure of La1−xSrxCoO3−δ (0 ⩽ x ⩽ 0.6). Powder Diffr 1996, 11: 31–34.CrossRefGoogle Scholar
  33. [33]
    Luo WJ, Wang FW. Powder X-ray diffraction and Rietveld analysis of La1−xBaxCoO3 (0 < x ⩽ 0.5). Powder Diffr 2006, 21: 304–306.CrossRefGoogle Scholar
  34. [34]
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32: 751–767.CrossRefGoogle Scholar
  35. [35]
    Cong C, Giovannelli F, Chartier T, et al. Synthesis and thermoelectric properties of doubly substituted La0.95Sr0.05Co1−xCrxO3 (0 ⩽ x ⩽ 0.5). Mater Res Bull 2018, 102: 257–261.CrossRefGoogle Scholar
  36. [36]
    Iwasaki K, Ito T, Nagasaki T, et al. Thermoelectric properties of polycrystalline La1-xSrx CoO3. J Solid State Chem 2008, 181: 3145–3150.CrossRefGoogle Scholar
  37. [37]
    Kun R, Populoh S, Karvonen L, et al. Structural and thermoelectric characterization of Ba substituted LaCoO3 perovskite-type materials obtained by polymerized gel combustion method. J Alloys Compd 2013, 579: 147–155.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  • Mohamed Ali Bousnina
    • 1
    • 2
  • Fabien Giovannelli
    • 1
  • Loïc Perriere
    • 3
  • Guillaume Guegan
    • 4
  • Fabian Delorme
    • 1
    Email author
  1. 1.Université François Rabelais de Tours, CNRS, INSA CVL, GREMAN UMR7347, IUT de BloisBlois CedexFrance
  2. 2.Université Paris 13, Sorbonne Paris Cite, Laboratoire des Sciences des Procédés et des Matériaux, CNRS, UPR 3407VilletaneuseFrance
  3. 3.Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-UPECThiaisFrance
  4. 4.ST MicroelectronicsToursFrance

Personalised recommendations