Journal of Advanced Ceramics

, Volume 8, Issue 1, pp 79–89 | Cite as

Idiosyncratic behaviour of (Na0.495K0.455Li0.05)(Nb0.95Ta0.05)O3–La2O3 ceramics: Synergistically improved thermal stability, ageing, and fatigue properties

  • Bhupender Rawal
  • N. N. Wathore
  • B. PraveenkumarEmail author
  • H. S. PandaEmail author
Open Access
Research Article


La2O3 doped (Na0.495K0.455Li0.05)(Nb0.95Ta0.05)O3 ceramics are prepared using modified milling process, and the influences of La2O3 on ferroelectric behaviour, ageing characteristics, thermal stability, electrical stability, crystal structure, microstructure, dielectric and piezoelectric properties were reported. La2O3 addition improved the ferroelectric characteristic substantially, and obtained remnant polarization (Pr) and maximum strain (Smax) around 34.3 C/cm2 and 0.13% respectively. La2O3 doped ceramics improved the thermal stability and were stable up to 180 °C compared to undoped ceramics (120 °C). The Rietveld refinement along with the high-temperature X-ray diffraction studies suggested the presence of monoclinic phase in La doped compositions, which is responsible for their idiosyncratic behaviour. The maximum values were obtained around 179 pC/N and 0.385 for piezoelectric constant (d33) and electromechanical coupling factor (kp) respectively in La2O3 doped samples (0.02 wt%), which also exhibited the lowest ageing rate and stable electrical fatigue behaviour.


dielectric fatigue piezoelectric thermal stability 


  1. [1]
    Haertling GH. Ferroelectric ceramics: History and technology. J Am Ceram Soc 1999, 82: 797–818.CrossRefGoogle Scholar
  2. [2]
    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004, 432: 84–87.CrossRefGoogle Scholar
  3. [3]
    Zhang S, Xia R, Shrout TR, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J Appl Phys 2006, 100: 104108.CrossRefGoogle Scholar
  4. [4]
    Yang Z, Chang Y, Liu B, et al. Effect of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3–LiSbO3 ceramics. Mat Sci Eng A 2006, 432: 292–298.CrossRefGoogle Scholar
  5. [5]
    Kakimoto K-i, Akao K, Guo Y, et al. Raman scattering study of piezoelectric (Na0.5K0.5)NbO3–LiNbO3 ceramics. Jpn J Appl Phys 2005, 44: 7064–7067.CrossRefGoogle Scholar
  6. [6]
    Guo Y, Kakimoto K-i, Ohsato H. (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater Lett 2005, 59: 241–244.CrossRefGoogle Scholar
  7. [7]
    Wang Y, Damjanovic D, Klein N, et al. Compositional inhomogeneity in Li-and Ta-modified (K,Na)NbO3 ceramics. J Am Ceram Soc 2007, 90: 3485–3489.CrossRefGoogle Scholar
  8. [8]
    Ming B-Q, Wang J-F, Qi P, et al. Piezoelectric properties of (Li,Sb,Ta) modified (Na,K)NbO3 lead-free ceramics. J Appl Phys 2007, 101: 054103.CrossRefGoogle Scholar
  9. [9]
    Shen Z-Y, Xu Y, Li J-F. Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics. Ceram Int 2012, 38: S331–S334.Google Scholar
  10. [10]
    Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K,Na)NbO3–LiTaO3 solid solution system. Ferroelectrics 2006, 338: 17–32.CrossRefGoogle Scholar
  11. [11]
    Bomlai P, Sukprasert S, Muensit S, et al. Reaction-sintering of lead-free piezoceramic compositions: (0.95–x)Na0.5K0.5NbO3–0.05LiTaO3xLiSbO3. J Mater Sci 2008, 43: 6116–6121.CrossRefGoogle Scholar
  12. [12]
    Zhou J-J, Li J-F, Zhang X-W. BiFeO3-modified (Li,K,Na)(Nb,Ta)O3 lead-free piezoelectric ceramics with temperature-stable piezoelectric property and enhanced mechanical strength. J Mater Sci 2012, 47: 1767–1773.CrossRefGoogle Scholar
  13. [13]
    Verbenko IA, Razumovskaya ON, Shilkina LA, et al. Production and dielectric properties of lead-free ceramics with the formula [(Na0.5K0.5)1–xLix](Nb1–yzTaySbz)O3. Inorg Mater 2009, 45: 702–708.CrossRefGoogle Scholar
  14. [14]
    Shen Z-Y, Wang K, Li J-F. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na,K)NbO3 lead-free piezoceramics. Appl Phys A 2009, 97: 911–917.CrossRefGoogle Scholar
  15. [15]
    Qin Y, Zhang J, Tan Y, et al. Domain configuration and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 ceramics. J Eur Ceram Soc 2014, 34: 4177–4184.CrossRefGoogle Scholar
  16. [16]
    Skidmore TA, Comyn TP, Milne SJ. Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics. Appl Phys Lett 2009, 94: 222902.CrossRefGoogle Scholar
  17. [17]
    Kim M-S, Lee D-S, Park E-C, et al. Effect of Na2O additions on the sinterability and piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3–5LiTaO3 ceramics. J Eur Ceram Soc 2007, 27: 4121–4124.CrossRefGoogle Scholar
  18. [18]
    Soller T, Bathelt R, Benkert K, et al. Textured and tungsten–bronze–niobate-doped (K,Na,Li)(Nb,Ta)O3 piez-oceramic materials. J Korean Phy Soc 2010, 57: 942–946.CrossRefGoogle Scholar
  19. [19]
    Kulcsar F. Electromechanical properties of lead titanate zirconate ceramics modified with certain three-or five-valent additions. J Am Ceram Soc 1959, 42: 343–349.CrossRefGoogle Scholar
  20. [20]
    Singh V, Kumar HH, Kharat DK, et al. Effect of lanthanum substitution on ferroelectric properties of niobium doped PZT ceramics. Mater Lett 2006, 60: 2964–2968.CrossRefGoogle Scholar
  21. [21]
    Praveenkumar B, Kumar HH, Kharat DK, et al. Investigation and characterization of La-doped PZT nanocrystalline ceramic prepared by mechanical activation route. Mater Chem Phys 2008, 112: 31–34.CrossRefGoogle Scholar
  22. [22]
    Zuo R, Wang M, Ma B, et al. Sintering and electrical properties of Na0.5K0.5NbO3 ceramics modified with lanthanum and iron oxides. J Phys Chem Solids 2009, 70: 750–754.CrossRefGoogle Scholar
  23. [23]
    Murty SN, Umakantham K, Bhanumathi A. Ferroelectric behaviour of lanthanum doped (NaK)NbO3 ceramics. Ferroelectrics 1988, 82: 141–147.CrossRefGoogle Scholar
  24. [24]
    Yang W, Zhou Z, Yang B, et al. Improvement in temperature stability and modified polymorphic phase transition of La-doped (Na0.52K0.44Li0.04)Nb0.8Ta0.2O3 lead-free piezoelectric ceramics. Mater Lett 2012, 70: 146–148.CrossRefGoogle Scholar
  25. [25]
    Li H, Meng Q, Gong D, et al. Good temperature stability and high piezoelectric properties of pure and La-doped tetragonal (K0.45Na0.55)0.94Li0.06·TaxNb1−xO3 ceramics. J Eur Ceram Soc 2014, 34: 4185–4192.CrossRefGoogle Scholar
  26. [26]
    Shannon RD. R evised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryt 1976, A32: 751–767.Google Scholar
  27. [27]
    Uršič H, Benčan A, Škarabot M, et al. Dielectric, ferroelectric, piezoelectric, and electrostrictive properties of K0.5Na0.5NbO3 single crystals. J Appl Phys 2010, 107: 033705.CrossRefGoogle Scholar
  28. [28]
    Lin D, Li Z, Zhang S, et al. Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free (K0.5Na0.5)NbO3 single crystal. Solid State Commun 2009, 149: 1646–1649.CrossRefGoogle Scholar
  29. [29]
    Härdtl KH. D efect structure of PLZT doped with Mn, Fe, and Al. J Am Ceram Soc 1981, 64: 283–288.CrossRefGoogle Scholar
  30. [30]
    Ge W, Ren Y, Zhang J, et al. A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3x%LiNbO3 solid solution. J Appl Phys 2012, 111: 103503.CrossRefGoogle Scholar
  31. [31]
    Skidmore TA, Milne SJ. Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1–x–[LiTaO3]x powder. J Mater Res 2007, 22: 2265–2272.CrossRefGoogle Scholar
  32. [32]
    Pdungsap L, Udomkan N, Boonyuen S, et al. Optimized conditions for fabrication of La-dopant in PZT ceramics. Sensor Actuat A: Phys 2005, 122: 250–256.CrossRefGoogle Scholar
  33. [33]
    Cohen RC. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358: 136–138.CrossRefGoogle Scholar
  34. [34]
    Yin N, Jalalian A, Zhao L, et al. Correlation between crystal structures, Raman scattering and piezoelectric properties of lead-free Na0.5K0.5NbO3. J Alloys Compd 2015, 652: 341–345.CrossRefGoogle Scholar
  35. [35]
    Kreisel J, Glazer AM, Jones G, et al. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1−xKx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys: Condens Matter 2000, 12: 3267–3280.Google Scholar
  36. [36]
    Scott J, Araujo C, Melnick B, et al. Quantititative measurement of space-charge effects in lead zirconate-titanate memories. J Appl Phys 1991, 70: 382–388.CrossRefGoogle Scholar
  37. [37]
    Nuffer J, Lupascu DC, Rödel J. Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater 2000, 48: 3783–3794.CrossRefGoogle Scholar
  38. [38]
    Nuffer J, Lupascu DC, Rödel J. Stability of pinning centers in fatigued lead–zirconate–titanate. Appl Phys Lett 2002, 80: 1049–1051.CrossRefGoogle Scholar
  39. [39]
    Li KT, Lo VC. Simulation of oxygen vacancy induced phenomena in ferroelectric thin films. J Appl Phys 2005, 97: 034107.CrossRefGoogle Scholar
  40. [40]
    Arlt G, Neumann H. Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 1988, 87: 109–120.CrossRefGoogle Scholar
  41. [41]
    Bortolani F, del Campo A, Fernandez JF, et al. High strain in (K,Na)NbO3-based lead-free piezoelectric fibers. Chem Mater 2014, 26: 3838–3848.CrossRefGoogle Scholar
  42. [42]
    Yao F-Z, Yu Q, Wang K, et al. Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC Adv 2014, 4: 20062–20068.CrossRefGoogle Scholar
  43. [43]
    Wang K, Yao F-Z, Jo W, et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 2013, 23: 4079–4086.CrossRefGoogle Scholar
  44. [44]
    Li B, Blendell JE, Bowman KJ. Temperature-dependent poling behavior of lead-free BZT–BCT piezoelectrics. J Am Ceram Soc 2011, 94: 3192–3194.CrossRefGoogle Scholar
  45. [45]
    Yao F-Z, Wang K, Shen Y, et al. Robust CaZrO3-modified (K,Na)NbO3-based lead-free piezoceramics: High fatigue resistance insensitive to temperature and electric field. J Appl Phys 2015, 118: 134102.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Authors and Affiliations

  1. 1.Armament Research and Development EstablishmentPune-21India
  2. 2.Department of Materials EngineeringDefence Institute of Advanced TechnologyPune-25India

Personalised recommendations