Advertisement

Journal of Advanced Ceramics

, Volume 8, Issue 1, pp 47–61 | Cite as

Physico-chemical and mechanical properties of Ti3SiC2-based materials elaborated from SiC/Ti by reactive spark plasma sintering

  • Faten TurkiEmail author
  • Houyem Abderrazak
  • Frédéric Schoenstein
  • Florent Têtard
  • Mohieddine Abdellaoui
  • Noureddine Jouini
Open Access
Research Article
  • 36 Downloads

Abstract

In this paper, the synthesis of Ti3SiC2 from SiC/Ti powder using reactive spark plasma sintering (R-SPS) in the temperature range of 1300–1400 °C is reported. The results show that the purity of Ti3SiC2 is improved up to 75 wt% when the holding time is increased from 10 to 20 min at 1400 °C. The thermodynamic and experimental results indicate that Ti3SiC2 formation takes place via the reaction of a pre-formed TiC phase with the silicides, formed from the eutectic compositions. Detailed analysis of mechanical behaviour indicates that samples with higher percentage of secondary phases exhibit higher microhardness and better resistance compared to the near single phase Ti3SiC2.

Keywords

Ti3SiC2 reactive spark plasma sintering (R-SPS) density mechanical properties 

Notes

Acknowledgements

We would like to thank Jennifer Morrice, a former colleague of the University Paris 13, for her help in proofreading and improving the English style and expressions of the manuscript.

References

  1. [1]
    Arunajate san S, Carim AH. Symmetry and crystal structure of Ti3SiC2. Mater Lett 1994, 20: 319–324.CrossRefGoogle Scholar
  2. [2]
    Kisi EH, Crossley JAA, Myhra S, et al. Structure and crystal chemistry of Ti3SiC2. J Phys Chem Solids 1998, 59: 1437–1443.CrossRefGoogle Scholar
  3. [3]
    Barsoum MW. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog Solid St Chem 2000, 28: 201–281.CrossRefGoogle Scholar
  4. [4]
    Barsoum M W. Physical properties of the MAX phases. In Encyclopedia of Materials: Science and Technology, 2nd edn. Buschow RWCKHJ, Flemings MC, Ilschner B, et al. Eds. Oxford: Elsevier, 2006: 1–11.CrossRefGoogle Scholar
  5. [5]
    Abderrazak H, Turki F, Schoenstein F, et al. Effect of the mechanical alloying on the Ti3SiC2 formation by spark plasma sintering from Ti/Si/C powders. Int J Refract Met H 2012, 35: 163–169.CrossRefGoogle Scholar
  6. [6]
    Abderrazak H, Turki F, Schoenstein F, et al. Influence of mechanical alloying on Ti3SiC2 formation via spark plasma sintering technique from Ti/SiC/C powders. Ceram Int 2013, 39: 5365–5372.CrossRefGoogle Scholar
  7. [7]
    Turki F, Schoenstein F, Abdellaoui M, et al. Etude des propriétés mécaniques d’alliages à base de Ti3SiC2 élaborés par frittage flash. Journal of the Tunisian Chemical Society 2015, 17: 115–127.Google Scholar
  8. [8]
    Turki F, Abderrazak H, Schoenstein F, et al. SPS parameters influence on Ti3SiC2 formation from Si/TiC: Mechanical properties of the bulk materials. J Alloys Compd 2017, 708: 123–133.CrossRefGoogle Scholar
  9. [9]
    Kooi BJ, Kabel M, Kloosterman AB, et al. Reaction layers around SiC particles in Ti: An electron microscopy study. Acta Mater 1999, 47: 3105–3116.CrossRefGoogle Scholar
  10. [10]
    Gottselig B, Gyarmati E, Naoumidis A, et al. Joining of ceramics demonstrated by the example of SiC/Ti. J Eur Ceram Soc 1990, 6: 153–160.CrossRefGoogle Scholar
  11. [11]
    Naka M, Feng J, Schuster JC. Phase stability of SiC against Ti at high temperature. Vacuum 2008, 83: 223–225.CrossRefGoogle Scholar
  12. [12]
    Kuang Y, Ngai TL, Luo H, et al. SiC–Ti layered material prepared by binder-treated powder sintering. J Mater Process Tech 2009, 209: 4607–4610.CrossRefGoogle Scholar
  13. [13]
    Istomin PV, Nadutkin AV, Grass VÉ. Production of Ti3SiC2-based materials by SHS forced compaction of layered composite Ti–SiC. Glass Ceram 2012, 68: 366–368.CrossRefGoogle Scholar
  14. [14]
    Istomin P, Nadutkin A, Grass V. Fabrication of Ti3SiC2-based ceramic matrix composites by a powder-free SHS technique. Ceram Int 2013, 39: 3663–3667.CrossRefGoogle Scholar
  15. [15]
    Hungría T, Galy J, Castro A. Spark plasma sintering as a useful technique to the nanostructuration of piezo-ferroelectric materials. Adv Eng Mater 2009, 11: 615–631.CrossRefGoogle Scholar
  16. [16]
    Ghahremani D, Ebadzadeh T, Maghsodipour A. Spark plasma sintering of mullite: Relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ceram Int 2015, 41: 6409–6416.CrossRefGoogle Scholar
  17. [17]
    Chakraborty S, Mallick AR, Debnath D, et al. Densification, mechanical and tribological properties of ZrB2 by SPS: Effect of pulsed current. Int J Refract Met H 2015, 48: 150–156.CrossRefGoogle Scholar
  18. [18]
    Zhang Z-F, Sun Z-M, Hashimoto H. Fabrication and mechanical properties of ternary compound Ti3SiC2: Application of pulse discharge sintering technique. Adv Eng Mater 2002, 4: 864–868.CrossRefGoogle Scholar
  19. [19]
    Zhang ZF, Sun ZM. Shear fracture behavior of Ti3SiC2 induced by compression at temperatures below 1000. Mat Sci Eng A 2005, 408: 64–71.CrossRefGoogle Scholar
  20. [20]
    Zhou WB, Mei BC, Zhu JQ. Fabrication of high-purity ternary carbide Ti3SiC2 by spark plasma sintering technique. Mater Lett 2005, 59: 1547–1551.CrossRefGoogle Scholar
  21. [21]
    Zou Y, Sun Z, Hashimoto H, et al. Reaction mechanism in Ti–SiC–C powder mixture during pulse discharge sintering. Ceram Int 2010, 36: 1027–1031.CrossRefGoogle Scholar
  22. [22]
    El Saeed MA, Deorsola FA, Rashad RM. Influence of SPS parameters on the density and mechanical properties of sintered Ti3SiC2 powders. Int J Refract Met H 2013, 41: 48–53.CrossRefGoogle Scholar
  23. [23]
    Lide DR. CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 1999.Google Scholar
  24. [24]
    Rodríguez-Carvajal J. An introduction to the program FullProf. Laboratoire Léon Brillouin, 2001.Google Scholar
  25. [25]
    Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst 1969, 2: 65–71.CrossRefGoogle Scholar
  26. [26]
    Sato F, Li J-F, Watanabe R. Reaction synthesis of Ti3SiC2 from mixture of elemental powders. Mater Trans JIM 2000, 41: 605–608.CrossRefGoogle Scholar
  27. [27]
    Zhao YG, Hu SW, Sun HM, et al. Fabrication of in situ TiSi (Ti5Si3, TiSi)/TiC local reinforced steel matrix composite via combustion synthesis. ISIJ Int 2009, 49: 1401–1405.CrossRefGoogle Scholar
  28. [28]
    Kaschnitz E, Reiter P. Enthalpy and temperature of the titanium alpha-beta phase transformation. Int J Thermophys 2002, 23: 1339–1345.CrossRefGoogle Scholar
  29. [29]
    Pierson HO. H andbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps. Elsevier Science, 1996.Google Scholar
  30. [30]
    Yonenaga I. Thermo-mechanical stability of wide-bandgap semiconductors: High temperature hardness of SiC, AlN, GaN, ZnO and ZnSe. Physica B 2001, 308–310: 1150–1152.CrossRefGoogle Scholar
  31. [31]
    Min KS, Ardell AJ, Eck SJ, et al. A small-specimen investigation of the fracture toughness of Ti5Si3. J Mater Sci 1995, 30: 5479–5483.CrossRefGoogle Scholar
  32. [32]
    Sonber JK, Murthy TSRCh, Subramanian C, et al. Investigations on synthesis of HfB2 and development of a new composite with TiSi2. Int J Refract Met H 2010, 28: 201–210.CrossRefGoogle Scholar
  33. [33]
    Lis J, Miyamoto Y, Pampuch R, et al. Ti3SiC-based materials prepared by HIP–SHS techniques. Mater Lett 1995, 22: 163–168.CrossRefGoogle Scholar
  34. [34]
    Pampuch R, Lis J. Ti3SiC2—A plastic ceramic material. Ceramics, Charting the Future 1995: 725–732.Google Scholar
  35. [35]
    Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res 2011, 41: 195–227.CrossRefGoogle Scholar
  36. [36]
    Kooi BJ, Poppen RJ, Carvalho NJM, et al. Ti3SiC2: A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy. Acta Mater 2003, 51: 2859–2872.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  • Faten Turki
    • 1
    Email author
  • Houyem Abderrazak
    • 1
  • Frédéric Schoenstein
    • 2
  • Florent Têtard
    • 2
  • Mohieddine Abdellaoui
    • 1
  • Noureddine Jouini
    • 2
  1. 1.Laboratoire des Matériaux UtilesInstitut National de Recherche et d’Analyse Physico-chimique, Pôle Technologique de Sidi ThabetSidi ThabetTunisie
  2. 2.Laboratoire de Sciences des Procédés et MatériauxUniversité Paris 13, Sorbonne Paris Cité, CNRS, UPR 3407VilletaneuseFrance

Personalised recommendations