Journal of Advanced Ceramics

, Volume 1, Issue 2, pp 110–129 | Cite as

Some recent studies on glass/glass-ceramics for use as sealants with special emphasis for high temperature applications

  • G. P. Kothiyal
  • Madhumita Goswami
  • Babita Tiwari
  • Kuldeep Sharma
  • A. Ananthanarayanan
  • Lionel Montagne
Open Access


Glass-ceramics owing to a combination of useful properties such as tuneable thermal expansion coefficient (TEC), good mechanical durability and chemical inertness find widespread uses in a variety of applications including seals and coatings. Glass-ceramic-to-metal seals have been fabricated with various silicate, phosphate and borate based oxide glasses depending upon the intended application. In this article, we review our studies on various glass and glass-ceramics materials development with a view to understand bonding behaviour with metals/alloys at ambient and high temperatures through a comprehensive structure property correlation investigations. Detail studies on BaO-CaO-Al2O3-B2O3-SiO2 (BCABS), barium strontium alumino-silicate, and strontium alumino-silicate with different additives (like Nd2O3, La2O3, NiO, TiO2, V2O5, ZrO2, Cr2O3, and P2O5) and barium/strontiun zinc silicate (B/SZS) glass-ceramics for high temperature sealing. We shall illustrate the role of various thermo-physical and structural characterization techniques that allowed optimum selection of materials and processing parameters. We particularly highlight the complementary role of NMR and XRD in studying the material at the short range and long range length scales.

Key words

crystallization sintering glass-ceramics solid oxide fuel cells NMR 


  1. [1]
    Ananthanarayanan A, Kothiyal GP, Montagne L, et al. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li2O/Al2O3 ratio. J Solid State Chem 2010, 183: 120–127.CrossRefGoogle Scholar
  2. [2]
    Ananthanarayanan A, Kothiyal GP, Montagne L, et al. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P2O5 and TiO2 nucleants. J Solid State Chem 2010, 183: 1416–1422.CrossRefGoogle Scholar
  3. [3]
    Ananthanarayanan A, Kumar R, Deo M N, et al. Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass- ceramics. Ceram Int 2009, 35: 1661–1666.CrossRefGoogle Scholar
  4. [4]
    Donald IW. Glass-to-Metal Seals. Sheffield, UK: Society of Glass Technology, 2009.Google Scholar
  5. [5]
    Barbieri L, Corradi AB, Leonelli C, et al. Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Materials Research Bulletin 1997, 32: 637–648.CrossRefGoogle Scholar
  6. [6]
    Beall GH. Design and properties of glass-ceramics. Annu Rev Mat Sc 1992, 22: 91–119.CrossRefGoogle Scholar
  7. [7]
    Best SM, Porter AE, Thian ES, et al. Bioceramics: Past present and for the future. J Eur Ceram Soc 2008, 28: 1319–1327.CrossRefGoogle Scholar
  8. [8]
    Tumala RR. Ceramic and glass-ceramic packaging in the 1990s. J Am Ceram Soc 2005, 74: 895–908.CrossRefGoogle Scholar
  9. [9]
    Kumar R, Arvind A, Goswami M, et al. The effect of NiO on the phase formation, thermo-physical properties and sealing behaviour of lithium zinc silicate glass-ceramics. J Mater Sci 2009, 44: 3349–3355.CrossRefGoogle Scholar
  10. [10]
    Lee YK, Choi SY. Crystallization and properties of Fe2O3—CaO—SiO2 glasses. J Am Ceram Soc 1996, 79: 992–996.CrossRefGoogle Scholar
  11. [11]
    Sharma K, Dixit A, Bhattacharya S, et al. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide. Applied Surface Sciences 2010, 256: 3107–3115.CrossRefGoogle Scholar
  12. [12]
    Sharma K, Singh S, Prajapat CL, et al. Preparation and study of magnetic properties of silico phosphate glass and glass-ceramics having iron and zinc oxide. J Magnetism and Magnetic Materials 2009, 321: 3821–3828.CrossRefGoogle Scholar
  13. [13]
    Goswami M, Kothiyal GP, Montagne L, et al. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content. J Solid State Chem 2008, 181: 269–275.CrossRefGoogle Scholar
  14. [14]
    Guo X, Sun K, Yan Y, et al. Investigation on silver electric adhesive doped with Al2O3 ceramic particles for sealing planar solid oxide fuel cell. J Power Sources 2009, 192: 408–413.CrossRefGoogle Scholar
  15. [15]
    Ley KL, Krumpelt M, Kumar R, et al. Glass-ceramic sealants for solid oxide fuel cells: Part I. Physical properties. J Mater Res 1996, 11: 1489–1493.CrossRefGoogle Scholar
  16. [16]
    Mahapatra M K, Lu K. Glass-based seals for solid oxide fuel and electrolyzer cells—A review. Mat Sci Eng R 2010, 67: 65–85.CrossRefGoogle Scholar
  17. [17]
    Mahapatra MK, Lu K, Jr WTR. Thermophysical properties and devitrification of SrO-La2O3-Al2O3-B2O3-SiO2-based glass sealant for solid oxide fuel/electrolyzer cells. J Power Sources 2008, 179: 106–112.CrossRefGoogle Scholar
  18. [18]
    Meinhardt KD, Kim DS, Chou YS, et al. Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass-ceramic sealant. J Power Sources 2008, 182: 188–196.CrossRefGoogle Scholar
  19. [19]
    Menzler NH, Tietz F, Uhlenbruck S, et al. Materials and manufacturing technologies for solid oxide fuel cells. J Mater Sci 2010, 45: 3109–3135.CrossRefGoogle Scholar
  20. [20]
    Singh RN. Sealing technology for solid oxide fuel cells (SOFC). Int J Appl Cerm Technol 2007, 4: 134–144.CrossRefGoogle Scholar
  21. [21]
    Atkinson A, Sun B. Residual stress and thermal cycling of planar solid oxide fuel cells. Mat Sci Tech 2007, 23: 1135–1143.CrossRefGoogle Scholar
  22. [22]
    Bao C, Shi Y, Li C, et al. Multi-level simulation platform of SOFC-GT hybrid generation system. Int J Hydrogen Energy 2010, 35: 2894–2899.CrossRefGoogle Scholar
  23. [23]
    Hartman JS, Millard RL, Vance ER. A 29Si magic angle spinning NMR study of vitreous and sol-gel precursors to sphene glass ceramics and their thermal crystallization. J Non-Cryst Solids 1989, 108: 49–57.CrossRefGoogle Scholar
  24. [24]
    Kazeempur P, Dorer V, Ommi F. Evaluation of hydrogen and methane-fuelled solid oxide fuel cell systems for residential applications: System design alternative and parameter study. Int J Hydrogen Energy 2009, 34: 8630–8644.CrossRefGoogle Scholar
  25. [25]
    Kendall K, Singhal SC, Minh NQ. Cell and Stack Design. 1st Ed. Amsterdam, the Netherlands: Elsevier, 2003.Google Scholar
  26. [26]
    Larsen PH, James PF. Chemical stability of MgO/CaO/Cr2O3-Al2O3-B2O3-phosphate glasses in solid oxide fuel cell environment. J Mater Sci 1998, 33: 2499–2507.CrossRefGoogle Scholar
  27. [27]
    Lee KH, Strand RK. SOFC cogeneration system for building applications, part 1: Development of SOFC system-level model and the parametric study. Renewable Energy 2009, 34: 2831–2838.CrossRefGoogle Scholar
  28. [28]
    Lee KH, Strand RK. SOFC cogeneration system for building applications, part 2: System configuration and operating condition design. Renewable Energy 2009, 34: 2839–2846.CrossRefGoogle Scholar
  29. [29]
    Al-Sulaiman FA, Dincer I, Hamdullahpur F. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J Power Sources 2010, 15: 2346–2354.CrossRefGoogle Scholar
  30. [30]
    Bengisu MK, Brow RK, Yilmaz E, et al. Aluminoborate and aluminoborosilicate glasses with high chemical durability and the effect of P2O5 additions on the properties. J Non-Cryst Solids 2006, 352: 3668–3676.CrossRefGoogle Scholar
  31. [31]
    Chang HT, Lin CK, Liu CK. Effects of crystallization on the high-temperature mechanical properties of a glass sealant for solid oxide fuel cell. J Power Sources 2009, 195: 3159–3165.CrossRefGoogle Scholar
  32. [32]
    Fergus JW. Sealants for solid oxide fuel cells. J Power Sources 2005, 147: 46–57CrossRefGoogle Scholar
  33. [33]
    Ghosh S, Sharma AD, Kundu P, et al. Development and characterizations of BaO-CaO-Al2O3-SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application. J Non-Cryst Solids 2008, 354: 4081–4088.CrossRefGoogle Scholar
  34. [34]
    Lara C, Pascaul MJ, Prado MO, et al. Sintering of glasses in the system RO-Al2O3-BaO-SiO2 (R=Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ionics 2004, 170: 201–208.CrossRefGoogle Scholar
  35. [35]
    Ghosh S, Sharma AD, Kundu P, et al. Development and characterizations of BaO-CaO-Al2O3-SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application. J Non-Cryst Solids 2008, 354: 4081–4085.CrossRefGoogle Scholar
  36. [36]
    Goel A, Tulyaganov DU, Pascaul MJ, et al. Development and performance of diopside based glass-ceramic sealants for solid oxide fuel cells. J Non-Cryst Solids 2010, 356: 1070–1080.CrossRefGoogle Scholar
  37. [37]
    Wang SF, Wang YR, Hsu YF, et al. Effect of additives on the thermal properties and sealing characteristic of BaO-Al2O3-B2O3-SiO2 glass-ceramic for solid oxide fuel cell application. Int J Hydrogen Energy 2009, 34: 8235–8244.CrossRefGoogle Scholar
  38. [38]
    Sun T, Xiao H, Guo W, et al. Effect of Al2O3 content on BaO-Al2O3-B2O3-SiO2 glass sealant for solid oxide fuel cell. Ceram Int 2010, 36: 821–826.CrossRefGoogle Scholar
  39. [39]
    Ananthanarayanan A, Kothiyal GP, Montagne L, et al. The effect of P2O5 on the structure, sintering and sealing properties of barium calcium aluminum boro-silicate (BCABS) glasses. Mater Chem Phys 2011, 130: 880–889.CrossRefGoogle Scholar
  40. [40]
    Caurant D, Majerus O, Loiseau P, et al. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J Nuclear Mat 2006, 354: 143–162.CrossRefGoogle Scholar
  41. [41]
    Boccaccini AR, Hamann B. Review in Situ high-temperature optical microscopy. J Mater Sci 1999, 34: 5419–5436.CrossRefGoogle Scholar
  42. [42]
    Mackenzie KJD, Kemmitt T. Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid-state MAS NMR I. Celsian, BaAl2Si2O8. Thermochimica Acta 1999, 325: 5–12.CrossRefGoogle Scholar
  43. [43]
    Yang Z, Meinhardt KD, Stevenson JW. Chemical compatibility of Barium-Calcium-Aluminosilicate-based sealing glasses with the ferritic stainless steel interconnect in SOFCs. J Electrochemical Soc 2003, 150: A1095–A1101.CrossRefGoogle Scholar
  44. [44]
    MacMillan PW. Glass-Ceramics. London, UK: Academic Press, 1979.Google Scholar
  45. [45]
    Shelby JE. Introduction to Glass Science and Technology. Cambridge, UK: RSC, 2005.Google Scholar
  46. [46]
    Tiwari B, Dixit A, Pillai CGS, et al. Crystallization kinetics and mechanism of strontium zinc silicate glass. J Am Ceram Soc 2012, 95:1290–1296.CrossRefGoogle Scholar
  47. [47]
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 1956, 57: 217–221.CrossRefGoogle Scholar
  48. [48]
    Matusita K, Sakka S. Kinetic study on crystallization of glass by differential thermal analysis criterion on application of Kissinger plot. J Non-Cryst Solids 1980, 38–39: 741–746.CrossRefGoogle Scholar
  49. [49]
    Matusita K, Komatsu T, Yokota R. Kinetics of non isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci 1984, 19: 291–296.CrossRefGoogle Scholar
  50. [50]
    Matusita K, Miura K, Komatsu T. Kinetics of non isothermal crystallization of some fluorozirconate glasses. Thermochim Acta 1985, 88: 283–288.CrossRefGoogle Scholar
  51. [51]
    Mazurin OV, Porai-Koshits EA. Phase Separation in Glass. Amsterdam, the Netherlands: North-Hollan Physics Publishers, 1984.Google Scholar
  52. [52]
    Huntelaar ME, Cordfunke EHP, Scheele A. Phase relations in the Strontium Oxide-Silica-Zirconium dioxide system I. The system SrO-SiO2. J Alloys Compd 1993, 191: 87–90.CrossRefGoogle Scholar
  53. [53]
    Ardit M, Cruciani G, Dondi M. The crystal structure of Sr-Hardystonite, Sr2ZnSi2O7. Z Kristallogr 2010, 225: 298–301.CrossRefGoogle Scholar
  54. [54]
    Tiwari B, Dixit A, Kothiyal GP. Study of glasses/ glass-ceramics in the SrO-ZnO-SiO2 system as high temperature sealant for SOFC applications. Int J Hydrogen Energy 2011, 36: 15002–15008.CrossRefGoogle Scholar
  55. [55]
    Rao KJ. Structural Chemistry of Glasses. Amsterdam, the Netherlands: Elsevier, 2002.Google Scholar
  56. [56]
    Pascual MJ, Guillet A, Duran A. Optimization of glass-ceramic sealant compositions in the system MgO-BaO-SiO2 for solid oxide fuel cells (SOFC). J Power Sources 2007, 169: 40–47.CrossRefGoogle Scholar
  57. [57]
    Harada T, Takebe H, Kuwabara M. Effect of B2O3 addition on the thermal properties and structure of bulk and powdered barium phosphate glasses. J Am Ceram Soc 2006, 89: 247–250.CrossRefGoogle Scholar
  58. [58]
    Goel A, Pascual MJ, Ferreira JMF. Stable glass- ceramic sealants for solid oxide fuel cell. Int J Hydrogen Energy 2010, 35: 6911–6923.CrossRefGoogle Scholar
  59. [59]
    Tietz F. Thermal expansion of SOFC materials. Ionics 1999, 5: 129–139.CrossRefGoogle Scholar
  60. [60]
    Frantz JD, Mysen BO. Raman spectra and structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 melts to 1600°C. Chem Geol 1995, 121: 55.Google Scholar
  61. [61]
    Roy BN. Spectroscopic analysis of the structure of silicate glasses along the joint xMAlO2-(1−x)SiO2 (M = Li, Na, K, Rb, Cs). J Am Ceram Soc 1987, 70: 183.Google Scholar
  62. [62]
    Kamitsos EI, Kapoutsis JA, Jain H, et al. Vibrational study of the role of trivalent ions in sodium trisilicate glass. J Non-Cryst Solids 1994, 171: 31–45.CrossRefGoogle Scholar
  63. [63]
    Lin SL, Hawang CS. Structure of CeO2-Al2O3-SiO2 glasses. J Non-Cryst Solids 1996, 202: 61–67.CrossRefGoogle Scholar
  64. [64]
    Tiwari B, Pandey M, Sudarsan V, et al. Study of structural modification of sodium aluminophosphate glasses with TiO2 addition through Raman and NMR spectroscopy. Physica B 2008, 404: 47–51.CrossRefGoogle Scholar
  65. [65]
    Chryssikos GD. Bond length-Raman frequency correlation in borate crystals. J Raman Spectrosc 1991, 22: 645–650.CrossRefGoogle Scholar
  66. [66]
    Kamitsos EI, Karakassides MA, Chryssikos GD. Structure of borate glasses, part I: Raman study of cesium, rubidium and potassium borate glasses. Phys Chem Glasses 1989, 30: 229–234.Google Scholar
  67. [67]
    Raluca CL, Ioan A. FTIR and Raman study of silver lead borate based glasses. J Non-Cryst Solids 2007, 353: 2020–2024.CrossRefGoogle Scholar
  68. [68]
    Holland W, Beall G. Glass-Ceramic Technology. Westerville, USA: The American Ceramics Society, 2002.Google Scholar

Copyright information

© The Author(s) 2012

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • G. P. Kothiyal
    • 1
  • Madhumita Goswami
    • 1
  • Babita Tiwari
    • 2
  • Kuldeep Sharma
    • 1
    • 3
  • A. Ananthanarayanan
    • 1
    • 3
  • Lionel Montagne
    • 3
  1. 1.Glass and Advanced Ceramics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.UCCS — Unité de Catalyse et Chimie du Solide — UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, Université des Sciences et Technologies de LilleUniversité Lille Nord de FranceVilleneuve d’ AscqCedexFrance

Personalised recommendations