Current Genetic Medicine Reports

, Volume 7, Issue 1, pp 1–12 | Cite as

Protective Variants in Alzheimer’s Disease

  • Shea J. Andrews
  • Brian Fulton-Howard
  • Alison GoateEmail author
Neurogenetics and Psychiatric Genetics (C Cruchaga and C Karch, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Neurogenetics and Psychiatric Genetics


Purpose of Review

Over the last decade, over 40 loci have been associated with risk of Alzheimer’s disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants.

Recent Findings

Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC.


There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.


Alzheimer’s disease Protective SNP Genetic variants 


Compliance with Ethical Standards

Conflict of Interest

Shea J Andrews and Brian Fulton-Howard each declare no potential conflict of interest.

Alison Goate reports a grant from the NIH (NIA 1 U01 AG049508).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

40142_2019_156_MOESM1_ESM.xlsx (101 kb)
Supplementary Table 1: Reported Protective variants for Alzheimer's disease identified in our literature search. (XLSX 100 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.CrossRefPubMedGoogle Scholar
  2. 2.
    Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: the third rail in the development of Alzheimer’s disease. Trends Neurosci. 2015;38:621–36.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Absolute 10-year risk of dementia by age, sex and APOE genotype: a population-based cohort study. CMAJ. 2018;190:E1033–41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4,and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309:1483–92.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. Nature Publishing Group. 2007;39:17–23.CrossRefGoogle Scholar
  6. 6.
    Yu L, Lutz MW, Wilson RS, Burns DK, Roses AD, Saunders AM, et al. APOE ε4-TOMM40 ‘523 haplotypes and the risk of Alzheimer’s disease in older Caucasian and African Americans. PLoS One. 2017;12:e0180356.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2009;41:1088–93.CrossRefGoogle Scholar
  8. 8.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2011;43:429–35.CrossRefGoogle Scholar
  9. 9.
    Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet Nature Publishing Group. 2011;43:436–41.CrossRefGoogle Scholar
  10. 10.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA American Medical Association. 2010;303:1832–40.CrossRefGoogle Scholar
  11. 11.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. Nature Publishing Group. 2013;45:1452–8.CrossRefGoogle Scholar
  12. 12.
    •• Marioni R, Harris SE, McRae AF, Zhang Q, Hagenaars SP, Hill WD, et al. GWAS on family history of Alzheimer’s disease [Internet]. bioRxiv. 2018 [cited 2018 Nov 3]. p. 246223. Available from: Performed a meta-analysis of GWAS for clinical late-onset Alzheimer’s disease and family history of Alzheimer’s disease in a total sample size of 314,278. Identified 21 loci associated with AD—two of which are protective.
  13. 13.
    Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. University of Chicago Press. 1999;65:664–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, et al. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement. 2018;14:205–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghani M, Reitz C, George-Hyslop PS, Rogaeva E. Genetic complexity of early-onset Alzheimer’s disease. In: Galimberti D, Scarpini E, editors. Neurodegenerative diseases: clinical aspects, molecular genetics and biomarkers. Cham: Springer International Publishing; 2018. p. 29–50.CrossRefGoogle Scholar
  16. 16.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tan H. On the protective effects of gene SNPs against human cancer. EBioMedicine. 2018;33:4–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fox M. “Evolutionary medicine” perspectives on Alzheimer’s disease: review and new directions. Ageing Res Rev. 2018;47:140–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Schwartz MLB, Williams MS, Murray MF. Adding protective genetic variants to clinical reporting of genomic screening results: restoring balance. JAMA. 2017;317:1527–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Harper AR, Nayee S, Topol EJ. Protective alleles and modifier variants in human health and disease. Nat Rev Genet. 2015;16:689–701.CrossRefPubMedGoogle Scholar
  21. 21.
    •• Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Naj AC, Boland A, et al. Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing [Internet]. bioRxiv. 2018 [cited 2018 Nov 6]. p. 294629. Available from: The largest GWAS of clinically diagnosed Alzheimer’s disease to date ( n = 89,769). Identified 24 loci associated with AD—four of which are protective.
  22. 22.
    Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using family history of disease. Nat Genet. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2017;49:325–31.Google Scholar
  23. 23.
    • Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert J-C, Chung J, Naj AC, et al. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. Macmillan Publishers Limited; 2016;21:108–17. Performed an APOE stratified GWAS of Alzheimer’s disease and found a locus near the tau gene to be associated with reduced risk APOE e4- participants. Google Scholar
  24. 24.
    Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement. 2017;13:727–38.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen D-W, Yang J-F, Tang Z, Dong X-M, Feng X-L, Yu S, et al. Cholesteryl ester transfer protein polymorphism D442G associated with a potential decreased risk for Alzheimer’s disease as a modifier for APOE epsilon4 in Chinese. Brain Res. 2008;1187:52–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Dai Q-H, Gong D-K. Association of the polymorphisms and plasma level of CHI3L1 with Alzheimer’s disease in the Chinese Han population: a case-control study. Neuropsychobiology. 2018:1–9.Google Scholar
  27. 27.
    Anvar NE, Saliminejad K, Ohadi M, Kamali K, Daneshmand P, Khorshid HRK. Association between polymorphisms in Interleukin-16 gene and risk of late-onset Alzheimer’s disease. J Neurol Sci. 2015;358:324–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin M, Zhao L, Fan J, Lian X-G, Ye J-X, Wu L, et al. Association between HFE polymorphisms and susceptibility to Alzheimer’s disease: a meta-analysis of 22 studies including 4,365 cases and 8,652 controls. Mol Biol Rep. 2012;39:3089–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Li H-L, Lu S-J, Sun Y-M, Guo Q-H, Sadovnick AD, Wu Z-Y. The LRRK2 R1628P variant plays a protective role in Han Chinese population with Alzheimer’s disease. CNS Neurosci Ther. 2013;19:207–15.CrossRefPubMedGoogle Scholar
  30. 30.
    Janicki SC, Park N, Cheng R, Schupf N, Clark LN, Lee JH. Aromatase variants modify risk for Alzheimer’s disease in a multiethnic female cohort. Dement Geriatr Cogn Disord. 2013;35:340–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang X, DeKosky ST, Luedecking-Zimmer E, Ganguli M, Kamboh MI. Genetic variation in alpha(1)-antichymotrypsin and its association with Alzheimer’s disease. Hum Genet. 2002;110:356–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Ji W, Xu L, Zhou H, Wang S, Fang Y. Meta-analysis of association between the genetic polymorphisms on chromosome 11q and Alzheimer’s disease susceptibility. Int J Clin Exp Med. 2015;8:18235–44.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev. 2013;37:2878–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu Q, Brecht WJ, Weisgraber KH, Mahley RW, Huang Y. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. J Biol Chem. 2004;279:25511–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, et al. Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry. 2000;39:11657–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S. The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci Springer. 2016;60:325–35.CrossRefGoogle Scholar
  37. 37.
    Stipho F, Jackson R, Sabbagh MN. Pathologically confirmed Alzheimer’s disease in APOE ɛ2 homozygotes is rare but does occur. J Alzheimers Dis. 2018;62:1527–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Groot C, Sudre CH, Barkhof F, Teunissen CE, van Berckel BNM, Seo SW, et al. Clinical phenotype, atrophy, and small vessel disease in APOEε2 carriers with Alzheimer disease. Neurology [Internet]. 2018; Available from:
  39. 39.
    Bratosiewicz-Wasik J, Liberski PP, Peplonska B, Styczynska M, Smolen-Dzirba J, Cycon M, et al. Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene as risk factors for Alzheimer’s disease. Neurosci Lett. 2018;684:86–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chiba-Falek O, Gottschalk WK, Lutz MW. The effects of the TOMM40 poly-T alleles on Alzheimer’s disease phenotypes. Alzheimers Dement. 2018;14:692–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Jiao B, Liu X, Zhou L, Wang MH, Zhou Y, Xiao T, et al. Polygenic analysis of late-onset Alzheimer’s disease from Mainland China. PLoS One. Public Library of Science; 2015;10:e0144898.Google Scholar
  43. 43.
    Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20:1052–61.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Motoi Y, Aizawa T, Haga S, Nakamura S, Namba Y, Ikeda K. Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res. 1999;833:209–15.CrossRefPubMedGoogle Scholar
  45. 45.
    Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CAF, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. National Academy of Sciences; 2005;102:13461–13466.Google Scholar
  46. 46.
    Sager KL, Wuu J, Leurgans SE, Rees HD, Gearing M, Mufson EJ, et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann Neurol. 2007;62:640–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yajima R, Tokutake T, Koyama A, Kasuga K, Tezuka T, Nishizawa M, et al. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA. Biochem Biophys Res Commun. 2015;456:482–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Miyashita A, Koike A, Jun G, Wang L-S, Takahashi S, Matsubara E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One. Public Library of Science; 2013;8:e58618.Google Scholar
  49. 49.
    Zhang C-C, Wang H-F, Tan M-S, Wan Y, Zhang W, Zheng Z-J, et al. SORL1 is associated with the risk of late-onset Alzheimer’s disease: a replication study and meta-analyses. Mol Neurobiol. 2017;54:1725–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, et al. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol. 2016;132:213–24.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu G, Sun J-Y, Xu M, Yang X-Y, Sun B-L. SORL1 variants show different association with early-onset and late-onset Alzheimer’s disease risk. J Alzheimers Dis. 2017;58:1121–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Müller UC, Zheng H. Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2012;2:a006288.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin Anat 1995;8:429–431.Google Scholar
  54. 54.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2012;488:96–9.Google Scholar
  55. 55.
    Benilova I, Gallardo R, Ungureanu A-A, Castillo Cano V, Snellinx A, Ramakers M, et al. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J Biol Chem. 2014;289:30977–89.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem. 2014;289:30990–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang L-S, Naj AC, Graham RR, Crane PK, Kunkle BW, Cruchaga C, et al. Rarity of the Alzheimer disease-protective APP A673T variant in the United States. JAMA Neurol. 2015;72:209–16.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lv H, Jia L, Jia J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer’s disease. Neurobiol Aging. 2008;29:194–202.CrossRefPubMedGoogle Scholar
  59. 59.
    Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol. 2018;233:6483–94.CrossRefPubMedGoogle Scholar
  60. 60.
    •• Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW, et al. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med. 2017;9:100 Identified RAB10 as a protective gene using a novel linkage approach to identify resilience alleles in elderly cognitively normal APOE e4 carriers within densely affected AD families.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang X, Huang TY, Yancey J, Luo H, Zhang Y-W. Role of Rab GTPases in Alzheimer’s Disease. ACS Chem Neurosci [Internet]. 2018; Available from:
  62. 62.
    Abshire ET, Chasseur J, Bohn JA, Del Rizzo PA, Freddolino PL, Goldstrohm AC, et al. The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res. 2018;46:6257–70.CrossRefGoogle Scholar
  63. 63.
    Hughes KL, Abshire ET, Goldstrohm AC. Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biol. 2018:1–13.Google Scholar
  64. 64.
    Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, et al. Genetic determinants of disease progression in Alzheimer’s disease. J Alzheimers Dis. 2015;43:649–55.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li X-F, Kraev AS, Lytton J. Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem. 2002;277:48410–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Yang X, Lytton J. Purinergic stimulation of K+-dependent Na+/Ca2+ exchanger isoform 4 requires dual activation by PKC and CaMKII. Biosci Rep [Internet]. 2013;33. Available from:
  67. 67.
    Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, et al. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci. 2003;116:4159–68.CrossRefPubMedGoogle Scholar
  68. 68.
    Kunkle BW, Vardarajan BN, Naj AC, Whitehead PL, Rolati S, Slifer S, et al. Early-onset Alzheimer disease and candidate risk genes involved in endolysosomal transport. JAMA Neurol. 2017;74:1113–22.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A, Egleston BL, Golemis EA A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell The American Society for Cell Biology; 2008;19:1627–36.Google Scholar
  70. 70.
    Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. Public Library of Science; 2014;10:e1004606.Google Scholar
  71. 71.
    Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain. 2015;138:3076–88.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. Macmillan Publishers Limited. 2017;22:874–83.CrossRefPubMedGoogle Scholar
  73. 73.
    Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y. EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci. 2009;122:243–55.CrossRefPubMedGoogle Scholar
  74. 74.
    Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 1999;13:3125–35.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Martínez A, Otal R, Sieber B-A, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience. 2005;135:451–61.CrossRefPubMedGoogle Scholar
  76. 76.
    Lai K-O, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol. 2009;19:275–83.CrossRefPubMedGoogle Scholar
  77. 77.
    Hughes TM, Lopez OL, Evans RW, Kamboh MI, Williamson JD, Klunk WE, et al. Markers of cholesterol transport are associated with amyloid deposition in the brain. Neurobiol Aging. 2014;35:802–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang H-F, Tan L, Hao X-K, Jiang T, Tan M-S, Liu Y, et al. Effect of EPHA1 genetic variation on cerebrospinal fluid and neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. J Alzheimers Dis IOS Press. 2015;44:115–23.CrossRefPubMedGoogle Scholar
  79. 79.
    Liu G, Zhang Y, Wang L, Xu J, Chen X, Bao Y, et al. Alzheimer’s disease rs11767557 variant regulates EPHA1 gene expression specifically in human whole blood. J Alzheimers Dis. 2018;61:1077–88.CrossRefPubMedGoogle Scholar
  80. 80.
    Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol. 2017;96:372–82.CrossRefPubMedGoogle Scholar
  81. 81.
    Magno L, Lessard CB, Martins M, Cruz P, Katan M, Bilsland J, et al. Alzheimer’s disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph [Internet]. bioRxiv. 2018 [cited 2018 Nov 3]. p. 409706. Available from:
  82. 82.
    •• Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49:1373–84 Identified PLCG2 as rare coding variant associated with reduced AD risk in a rare variant analysis in a three-stage case–control study of 85,133 subjects.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–72.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liang Y, Buckley TR, Tu L, Langdon SD, Tedder TF. Structural organization of the human MS4A gene cluster on chromosome 11q12. Immunogenetics. 2001;53:357–68.CrossRefPubMedGoogle Scholar
  85. 85.
    Eon Kuek L, Leffler M, Mackay GA, Hulett MD. The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol. 2016;94:11–23.CrossRefPubMedGoogle Scholar
  86. 86.
    Ma J, Yu J-T, Tan L. MS4A cluster in Alzheimer’s disease. Mol Neurobiol Humana Press Inc. 2015;51:1240–8.CrossRefPubMedGoogle Scholar
  87. 87.
    • Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, et al. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.e7–217.e13 Conducted a rare variant analysis in the MS4A gene cluster and found that controls had a higher burden of damaging missense substitutions and loss-of-function variants.CrossRefGoogle Scholar
  88. 88.
    Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One. Public Library of Science. 2012;7:e50976.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Proitsi P, Lee SH, Lunnon K, Keohane A, Powell J, Troakes C, et al. Alzheimer’s disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood. Neurobiol Aging Elsevier. 2014;35:279–90.CrossRefPubMedGoogle Scholar
  90. 90.
    Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem. 2004;279:41197–207.CrossRefPubMedGoogle Scholar
  91. 91.
    Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.CrossRefPubMedGoogle Scholar
  92. 92.
    Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013;4:45.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Karasinska JM, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit JK, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445–55.CrossRefPubMedGoogle Scholar
  94. 94.
    Kölsch H, Lütjohann D, Jessen F, Von Bergmann K, Schmitz S, Urbach H, et al. Polymorphism in ABCA1 influences CSF 24S-hydroxycholesterol levels but is not a major risk factor of Alzheimer’s disease. Int J Mol Med. 2006;17:791–4.PubMedGoogle Scholar
  95. 95.
    Cascorbi I, Flüh C, Remmler C, Haenisch S, Faltraco F, Grumbt M, et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease | Pharmacogenomics [Internet]. [cited 2018 Nov 10]. Available from:
  96. 96.
    Li Y, Tacey K, Doil L, van Luchene R, Garcia V, Rowland C, et al. Association of ABCA1 with late-onset Alzheimer’s disease is not observed in a case-control study. Neurosci Lett. 2004;366:268–71.CrossRefPubMedGoogle Scholar
  97. 97.
    Shibata N, Kawarai T, Lee JH, Lee H-S, Shibata E, Sato C, et al. Association studies of cholesterol metabolism genes (CH25H, ABCA1 and CH24H) in Alzheimer’s disease. Neurosci Lett. 2006;391:142–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Wahrle SE, Shah AR, Fagan AM, Smemo S, Kauwe JSK, Grupe A, et al. Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms. Mol Neurodegener. 2007;2:7.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Katzov H, Chalmers K, Palmgren J, Andreasen N, Johansson B, Cairns NJ, et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat. 2004;23:358–67.CrossRefPubMedGoogle Scholar
  100. 100.
    Reynolds CA, Hong M-G, Eriksson UK, Blennow K, Bennet AM, Johansson B, et al. A survey of ABCA1 sequence variation confirms association with dementia. Hum Mutat. 2009;30:1348–54.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Sundar PD, Feingold E, Minster RL, DeKosky ST, Kamboh MI. Gender-specific association of ATP-binding cassette transporter 1 (ABCA1) polymorphisms with the risk of late-onset Alzheimer’s disease. Neurobiol Aging. 2007;28:856–62.CrossRefPubMedGoogle Scholar
  102. 102.
    Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimers Dement. 2015;11:1430–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Rodríguez-Rodríguez E, Mateo I, Llorca J, Sánchez-Quintana C, Infante J, García-Gorostiaga I, et al. Association of genetic variants of ABCA1 with Alzheimer’s disease risk. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:964–8.CrossRefPubMedGoogle Scholar
  104. 104.
    Wollmer MA, Streffer JR, Lütjohann D, Tsolaki M, Iakovidou V, Hegi T, et al. ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer’s disease. Neurobiol Aging. 2003;24:421–6.CrossRefPubMedGoogle Scholar
  105. 105.
    Wang F, Jia J. Polymorphisms of cholesterol metabolism genes CYP46 and ABCA1 and the risk of sporadic Alzheimer’s disease in Chinese. Brain Res. 2007;1147:34–8.CrossRefPubMedGoogle Scholar
  106. 106.
    Lupton MK, Proitsi P, Lin K, Hamilton G, Daniilidou M, Tsolaki M, et al. The role of ABCA1 gene sequence variants on risk of Alzheimer’s disease. J Alzheimers Dis. 2014;38:897–906.CrossRefPubMedGoogle Scholar
  107. 107.
    Fan J, Zhao RQ, Parro C, Zhao W, Chou H-Y, Robert J, et al. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res. 2018;59:830–42.CrossRefPubMedGoogle Scholar
  108. 108.
    Báez-Becerra C, Filipello F, Sandoval-Hernández A, Arboleda H, Arboleda G. Liver X receptor agonist GW3965 regulates synaptic function upon amyloid beta exposure in hippocampal neurons. Neurotox Res. 2018;33:569–79.CrossRefPubMedGoogle Scholar
  109. 109.
    Lei C, Lin R, Wang J, Tao L, Fu X, Qiu Y, et al. Amelioration of amyloid β-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-κB signaling and NLRP3 inflammasome. Neuroscience. 2017;360:48–60.CrossRefPubMedGoogle Scholar
  110. 110.
    Ren G, Bao W, Zeng Z, Zhang W, Shang C, Wang M, et al. RXRα nitro-ligand Z-10 and its optimized derivative Z-36 reduce β-amyloid plaques in AD mouse model. Mol Pharm [Internet]. 2018; Available from:
  111. 111.
    Wang W, Nakashima K-I, Hirai T, Inoue M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J Nat Med [Internet]. 2018; Available from:
  112. 112.
    Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla K, Rebeck GW, et al. HDL mimetic peptide 4F mitigates Aβ-induced inhibition of ApoE secretion and lipidation in primary astrocytes and microglia. J Neurochem [Internet]. 2018; Available from:
  113. 113.
    Maezawa I, Zou B, Di Lucente J, Cao WS, Pascual C, Weerasekara S, et al. The anti-amyloid-β and neuroprotective properties of a novel tricyclic pyrone molecule. J Alzheimers Dis. 2017;58:559–74.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Tice CM, Noto PB, Fan KY, Zhao W, Lotesta SD, Dong C, et al. Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core. Bioorg Med Chem Lett. 2016;26:5044–50.CrossRefPubMedGoogle Scholar
  115. 115.
    Boehm-Cagan A, Bar R, Liraz O, Bielicki JK, Johansson JO, Michaelson DM. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016;54:1219–33.CrossRefPubMedGoogle Scholar
  116. 116.
    Sun Y, Fan J, Zhu Z, Guo X, Zhou T, Duan W, et al. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur J Pharmacol. 2015;762:202–13.CrossRefPubMedGoogle Scholar
  117. 117.
    Williams TJ. Eotaxin-1 (CCL11). Front Immunol. 2015;6:84.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    • Lalli MA, Bettcher BM, Arcila ML, Garcia G, Guzman C, Madrigal L, et al. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer’s disease. Mol Psychiatry. 2015;20:1294–300 In a candidate gene study, rare variants in ABCA1 were found to be more frequent in controls than cases.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol. 2018;189:29–33.CrossRefPubMedGoogle Scholar
  121. 121.
    Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D, Stefanini C, et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat Genet. 2012;44:636–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Caffrey TM, Joachim C, Wade-Martins R. Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus. Neurobiol Aging. 2008;29:1923–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Wang J, Feng JQ. Signaling pathways critical for tooth root formation. J Dent Res. 2017;96:1221–8.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Edelmann S, Fahrner R, Malinka T, Song BH, Stroka D, Mermod N. Nuclear factor I-C acts as a regulator of hepatocyte proliferation at the onset of liver regeneration. Liver Int. 2015;35:1185–94.CrossRefPubMedGoogle Scholar
  125. 125.
    Zheng J-Y, Sun J, Ji C-M, Shen L, Chen Z-J, Xie P, et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging. 2017;54:112–32.CrossRefPubMedGoogle Scholar
  126. 126.
    Mason S, Piper M, Gronostajski RM, Richards LJ. Nuclear factor one transcription factors in CNS development. Mol Neurobiol. 2009;39:10–23.CrossRefPubMedGoogle Scholar
  127. 127.
    Kamboh MI. A brief synopsis on the genetics of Alzheimer’s disease. Curr Genet Med Rep. Springer. 2018:1–3.Google Scholar
  128. 128.
    Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry. Nature Publishing Group. 2018;1.Google Scholar
  129. 129.
    Rathore N, Ramani SR, Pantua H, Payandeh J, Bhangale T, Wuster A, et al. Paired immunoglobulin-like type 2 receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. Public Library of Science. 2018;14:e1007427.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy number variants in Alzheimer’s disease. J Alzheimers Dis. 2017;55:37–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shea J. Andrews
    • 1
  • Brian Fulton-Howard
    • 1
  • Alison Goate
    • 1
    Email author
  1. 1.Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations