Current Genetic Medicine Reports

, Volume 6, Issue 2, pp 62–72 | Cite as

Mitochondrial Disease: Advances in Clinical Diagnosis, Management, Therapeutic Development, and Preventative Strategies

  • Colleen C. Muraresku
  • Elizabeth M. McCormick
  • Marni J. FalkEmail author
Genetic Counseling and Clinical Testing (B LeRoy and N Callanan, Section Editors)
Part of the following topical collections:
  1. Genetic Counseling and Clinical Testing


Purpose of Review

Primary mitochondrial disease encompasses an impressive range of inherited energy deficiency disorders having highly variable molecular etiologies as well as clinical onset, severity, progression, and response to therapies of diverse multi-system manifestations. Significant progress has been made in primary mitochondrial disease diagnostic approaches, clinical management, therapeutic options, and preventative strategies that are tailored to major mitochondrial disease phenotypes and subclasses.

Recent Findings

The extensive phenotypic pleiotropy of individual mitochondrial diseases from an organ-based perspective is reviewed. Improved consensus on standards for mitochondrial disease patient care are being complemented by emerging therapies that target specific molecular subtypes of mitochondrial disease. Reproductive counseling options now include pre-implantation genetic diagnosis at the time of in vitro fertilization for familial mutations in nuclear genes and some mtDNA disorders. Mitochondrial replacement technologies have promise for some mtDNA disorders, although practical and societal challenges remain to allow their further research evaluation and clinical utilization.


A dramatic improvement has occurred in recent years in the recognition, understanding, treatment options, and preventative strategies for primary mitochondrial disease.


Mitochondrial disease Diagnosis Treatment Prevention 


Compliance with Ethical Standards

Conflict of Interest

Marni J. Falk reports other from REATA Pharmaceuticals, grants, personal fees and other from Stealth Pharmaceuticals, other from United Mitochondrial Disease Foundation, other from GENESIS, grants and other from Raptor Pharmaceuticals, outside the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Prim. 2016; 2, 16080 Excellent overview of mitochondrial disease. Google Scholar
  2. 2.
    Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    • Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel-Guitton C, et al. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Gen. Med. 2017; 19. Expert panel consensus guidelines for mitochondrial disease patient care. Google Scholar
  4. 4.
    • Distelmaier F, Haack TB, Wortmann SB, Mayr JA, and Prokisch H Treatable mitochondrial diseases: cofactor metabolism and beyond. Brain : J Neurol. 2017; 140, e11. Current review of treatable mitochondrial disease gene disorders. Google Scholar
  5. 5.
    Gaier ED, Boudreault K, Nakata I, Janessian M, Skidd P, DelBono E, et al. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status. Mol Vis. 2017;23:548–60.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain : J Neurol. 2010;133:771–86.CrossRefGoogle Scholar
  7. 7.
    Finsterer J, Zarrouk-Mahjoub S. Leber’s hereditary optic neuropathy is multiorgan not mono-organ. Clin Ophthalmol. 2016;10:2187–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Orssaud C. Cardiac disorders in patients with Leber hereditary optic neuropathy. J Neuro-ophthalmol : Off J North Am Neuro-Ophthalmol Soc. 2018Google Scholar
  9. 9.
    Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132:789–806.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Federico A, et al. Revisiting mitochondrial ocular myopathies: a study from the Italian network. J Neurol. 2017;264:1777–84.CrossRefPubMedGoogle Scholar
  11. 11.
    Broomfield A, Sweeney MG, Woodward CE, Fratter C, Morris AM, Leonard JV, et al. Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. J Inherit Metab Dis. 2015;38:445–57.CrossRefPubMedGoogle Scholar
  12. 12.
    Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry. 1951;14:216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bonfante E, Koenig MK, Adejumo RB, Perinjelil V, Riascos RF. The neuroimaging of Leigh syndrome: case series and review of the literature. Pediatr Radiol. 2016;46:443–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Veggiotti P, Colamaria V, Dalla Bernardina B, Martelli A, Mangione D, Lanzi G. Epilepsia partialis continua in a case of MELAS: clinical and neurophysiological study. Neurophysiologie clinique = Clinical neurophysiology. 1995;25:158–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Antozzi C, Franceschetti S, Filippini G, Barbiroli B, Savoiardo M, Fiacchino F, et al. Epilepsia partialis continua associated with NADH-coenzyme Q reductase deficiency. J Neurol Sci. 1995;129:152–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Falk MJ. Neurodevelopmental manifestations of mitochondrial disease. J Dev Behav Pediatr: JDBP. 2010;31:610–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schrier SA, Falk MJ. Mitochondrial disorders and the eye. Curr Opin Ophthalmol. 2011;22:325–31.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gronlund MA, Honarvar AK, Andersson S, Moslemi AR, Oldfors A, Holme E, et al. Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol. 2010;94:121–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Estivill X, Govea N, Barcelo E, Badenas C, Romero E, Moral L, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet. 1998;62:27–35.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guan MX. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion. 2011;11:237–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Yelverton JC, Arnos K, Xia XJ, Nance WE, Pandya A, Dodson KM. The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngology--Head Neck Surg : Off J Am Acad Otolaryngol-Head Neck Surg. 2013;148:1017–22.CrossRefGoogle Scholar
  22. 22.
    Berrettini S, Forli F, Passetti S, Rocchi A, Pollina L, Cecchetti D, et al. Mitochondrial non-syndromic sensorineural hearing loss: a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep. 2008;28:49–59.CrossRefPubMedGoogle Scholar
  23. 23.
    Pandya A. Nonsyndromic hearing loss and deafness, mitochondrial. in GeneReviews((R)) (Adam, M. P., Ardinger, H. H., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Stephens, K., and Amemiya, A. eds.), Seattle (WA). pp. 1993Google Scholar
  24. 24.
    Yamamoto N, Okuyama H, Hiraumi H, Sakamoto T, Matsuura H, Ito J. The outcome of cochlear implantation for mitochondrial disease patients with syndromic hearing loss. Otol Neurotology : Off Publ Am Otological Soc Am Neurotology Soc [and] Eur Acad Otology Neurotology. 2015;36:e129–33.CrossRefGoogle Scholar
  25. 25.
    Debray FG, Lambert M, Chevalier I, Robitaille Y, Decarie JC, Shoubridge EA, et al. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. 2007;119:722–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114:925–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24:280–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49:377–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Ng YS, Grady JP, Lax NZ, Bourke JP, Alston CL, Hardy SA, et al. Sudden adult death syndrome in m.3243A>G-related mitochondrial disease: an unrecognized clinical entity in young, asymptomatic adults. Eur Heart J. 2016;37:2552–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Wheeler TT, Sadowski HB, Young DA. Glucocorticoid and phorbol ester effects in 3T3-L1 fibroblasts suggest multiple and previously undescribed mechanisms of glucocorticoid receptor-AP-1 interaction. Mol Cell Endocrinol. 1994;104:29–38.CrossRefPubMedGoogle Scholar
  31. 31.
    Bogaard JM, Busch HF, Scholte HR, Stam H, Versprille A. Exercise responses in patients with an enzyme deficiency in the mitochondrial respiratory chain. Eur Respir J. 1988;1:445–52.PubMedGoogle Scholar
  32. 32.
    Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain : J Neurol. 2003;126:413–23.CrossRefGoogle Scholar
  33. 33.
    Riley MS, Nicholls DP, Cooper CB. Cardiopulmonary exercise testing and metabolic myopathies. Ann Am Thorac Soc. 2017;14:S129–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 2017;13:92–104.CrossRefPubMedGoogle Scholar
  35. 35.
    Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16:1–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Whittaker RG, Schaefer AM, McFarland R, Taylor RW, Walker M, Turnbull DM. Prevalence and progression of diabetes in mitochondrial disease. Diabetologia. 2007;50:2085–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Maassen JA, LM TH, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53(Suppl 1):S103–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Al-Gadi I, Haas R, Falk MJ, Goldstein A, and McCormack S. Endocrine disorders in primary mitochondrial disease. J Endo Soc. 2018Google Scholar
  39. 39.
    Gandhi SS, Muraresku C, McCormick EM, Falk MJ, McCormack SE. Risk factors for poor bone health in primary mitochondrial disease. J Inherit Metab Dis. 2017;40:673–83.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Perez-Albert P, de Lucas Collantes C, Fernandez-Garcia MA, de Rojas T, Aparicio Lopez C, and Gutierrez-Solana L. Mitochondrial disease in children: the nephrologist’s perspective. JIMD reports. 2017Google Scholar
  41. 41.
    Mitochondrial Medicine Society’s Committee on D, Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94:16–37.CrossRefGoogle Scholar
  42. 42.
    Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics. 2007;120:1326–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med: Off J Am Coll Med Genet. 2015;17:689–701.CrossRefGoogle Scholar
  44. 44.
    Boycott KM, Innes AM. When one diagnosis is not enough. N Engl J Med. 2017;376:83–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Goldenthal MJ, Kuruvilla T, Damle S, Salganicoff L, Sheth S, Shah N, et al. Non-invasive evaluation of buccal respiratory chain enzyme dysfunction in mitochondrial disease: comparison with studies in muscle biopsy. Mol Genet Metab. 2012;105:457–62.CrossRefPubMedGoogle Scholar
  46. 46.
    El-Hattab AW, Almannai M, Scaglia F. Arginine and citrulline for the treatment of MELAS syndrome. Journal of inborn errors of metabolism and screening. 2017;5:232640981769739.CrossRefGoogle Scholar
  47. 47.
    Kitamura M, Yatsuga S, Abe T, Povalko N, Saiki R, Ushijima K, et al. L-arginine intervention at hyper-acute phase protects the prolonged MRI abnormality in MELAS. J Neurol. 2016;263:1666–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ganetzky RD, Falk MJ. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease. Mol Genet Metab. 2018;123:301–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Smith A, Dunne E, Mannion M, O’Connor C, Knerr I, Monavari AA, et al. A review of anaesthetic outcomes in patients with genetically confirmed mitochondrial disorders. Eur J Pediatr. 2017;176:83–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Siciliano G, Simoncini C, Lo Gerfo A, Orsucci D, Ricci G, Mancuso M. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies. Neuromuscul Disord : NMD. 2012;22(Suppl 3):S172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11:414–30.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pfeffer G, Horvath R, Klopstock T, Mootha VK, Suomalainen A, Koene S, et al. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol. 2013;9:474–81.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, et al. Nutritional interventions for mitochondrial OXPHOS deficiencies: mechanisms and model systems. Annu Rev Pathol. 2018;13:163–91.CrossRefPubMedGoogle Scholar
  54. 54.
    Camp KM, Krotoski D, Parisi MA, Gwinn KA, Cohen BH, Cox CS, et al. Nutritional interventions in primary mitochondrial disorders: developing an evidence base. Mol Genet Metab. 2016;119:187–206.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP, de Coo IF. Mitochondrial neurogastrointestinal encephalomyopathy caused by thymidine phosphorylase enzyme deficiency: from pathogenesis to emerging therapeutic options. Front Cell Neurosci. 2017;11:31.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, et al. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol. 2017;81:641–52.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Torres-Torronteras J, Cabrera-Perez R, Vila-Julia F, Viscomi C, Camara Y, Hirano M, et al. Long-term sustained effect of liver-targeted AAV gene therapy for MNGIE. Hum Gene Ther. 2017;Google Scholar
  59. 59.
    Pronicka E. Hypocapnic hypothesis of Leigh disease. Med Hypotheses. 2017;101:23–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol: CB. 2018;28:R170–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Peng M, Ostrovsky J, Kwon YJ, Polyak E, Licata J, Tsukikawa M, et al. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum Mol Genet. 2015;24:4829–47.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    The National Academies of Science, Engineering and Medicine. (2017) Enabling precision medicine: the role of genetics in clinical drug development. The National Academies Press, Washington, D.C.Google Scholar
  63. 63.
    Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015;520:609–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Stacpoole PW, Shuster J, Thompson J, Prather RA, Lawson LA, Zou B, et al. Development of a novel observer reported outcome tool as the primary efficacy outcome measure for a rare disease randomized controlled trial. Mitochondrion. 2017;Google Scholar
  65. 65.
    Imudia AN, Plosker S. The past, present, and future of preimplantation genetic testing. Clin Lab Med. 2016;36:385–99.CrossRefPubMedGoogle Scholar
  66. 66.
    McCormick EM, Muraresku CC, Falk MJ. Mitochondrial genomics: a complex field now coming of age. Curr Gen Med Report. 2018.
  67. 67.
    Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science. 2008;319:958–62.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 2008;6:e10.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Floros VI, Pyle A, Dietmann S, Wei W, Tang WWC, Irie N, et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol. 2018;20:144–51.CrossRefPubMedGoogle Scholar
  70. 70.
    Wilson IJ, Carling PJ, Alston CL, Floros VI, Pyle A, Hudson G, et al. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum Mol Genet. 2016;25:1031–41.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sallevelt SC, de Die-Smulders CE, Hendrickx AT, Hellebrekers DM, de Coo IF, Alston CL, et al. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet. 2017;54:73–83.CrossRefPubMedGoogle Scholar
  72. 72.
    Mitalipov S, Amato P, Parry S, Falk MJ. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep. 2014;7:935–7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Smeets HJ, Sallevelt SC, Dreesen JC, de Die-Smulders CE, de Coo IF. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann N Y Acad Sci. 2015;1350:29–36.CrossRefPubMedGoogle Scholar
  74. 74.
    Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update. 2017;23:501–19.CrossRefPubMedGoogle Scholar
  75. 75.
    Tachibana M, Sparman M, Mitalipov S. Chromosome transfer in mature oocytes. Nat Protoc. 2010;5:1138–47.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Richardson J, Irving L, Hyslop LA, Choudhary M, Murdoch A, Turnbull DM, et al. Concise reviews: assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells. 2015;33:639–45.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Herbert M, Turnbull D. Mitochondrial donation—clearing the final regulatory hurdle in the United Kingdom. N Engl J Med. 2017;376:171–3.CrossRefPubMedGoogle Scholar
  78. 78.
    The National Academies of Science, E., and Medicine. Mitochondrial replacement techniques: ethical, social, and policy considerations. In: The National Academies Press. Washington: D.C; 2016.Google Scholar
  79. 79.
    Falk MJ, Decherney A, Kahn JP. Mitochondrial replacement techniques—implications for the clinical community. N Engl J Med. 2016;374:1103–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Colleen C. Muraresku
    • 1
  • Elizabeth M. McCormick
    • 1
  • Marni J. Falk
    • 1
    • 2
    Email author
  1. 1.Mitochondrial Medicine Frontier Program, Division of Human GeneticsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations