Advertisement

Current Genetic Medicine Reports

, Volume 3, Issue 4, pp 151–157 | Cite as

Mixed Ancestry and Disease Risk Transferability

  • Daniel Shriner
Genomics (SM Williams, Section Editor)
Part of the following topical collections:
  1. Genomics

Abstract

Ancestry is the series of ancestors who form a line of descent or lineage back to an arbitrary founder or founding population. In recent years, integration of genome-wide genotype and sequence data from multiple populations worldwide has provided much insight into the identities and distributions of ancestral populations or clusters, thereby improving our understanding of historical migrations and current population structure at a sub-continental or regional level. Genetic ancestry, distinct from self-reported ancestry or ethnicity, serves both as a confounder in genetic association studies of genotypes and as a predictor in admixture mapping studies. This review focuses on the impact of genetic ancestry on transferability of genetic loci conferring disease risk.

Keywords

Ancestry Admixture Disease risk Population structure 

Notes

Acknowledgments

The contents of this publication are solely the responsibility of the author and do not necessarily represent the official view of the National Institutes of Health. This research was supported by the Intramural Research Program of the Center for Research on Genomics and Global Health (CRGGH). The CRGGH is supported by the National Human Genome Research Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Center for Information Technology, and the Office of the Director at the National Institutes of Health (Z01HG200362).

Compliance with Ethical Guidelines

Conflict of interest

Dr. Daniel Shriner has no conflict of interest.

Human and Animal Rights and Informed Consent

All studies by Daniel Shriner involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

References

Papers of particular interest published in the last three years have been highlighted as: • Of importance •• Of major importance

  1. 1.
    The International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.CrossRefGoogle Scholar
  2. 2.
    Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.CrossRefPubMedGoogle Scholar
  3. 3.
    Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet. 2000;67:170–81.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Eu-Ahsunthornwattana J, Miller EN, Fakiola M, Jeronimo SMB, Blackwell JM, Wellcome Trust Case Control Consortium 2, et al. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genet. 2014;10:e1004445.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am J Hum Genet. 2015;96:37–53.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Padhukasahasram B. Inferring ancestry from population genomic data and its applications. Front Genet. 2014;5:204.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197:573–89.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bansal V, Libiger O. Fast individual ancestry inference from DNA sequence data leveraging allele frequencies for multiple populations. BMC Bioinformatics. 2015;16:4.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Pugach I, Matveyev R, Wollstein A, Kayser M, Stoneking M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 2011;12:R19.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, et al. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics. 2012;28:1359–67.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Brisbin A, Bryc K, Byrnes J, Zakharia F, Omberg L, Degenhardt J, et al. PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum Biol. 2012;84:343–64.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Churchhouse C, Marchini J. Multiway admixture deconvolution using phased or unphased ancestral panels. Genet Epidemiol. 2013;37:1–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93:278–88.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Rodriguez JM, Bercovici S, Elmore M, Batzoglou S. Ancestry inference in complex admixtures via variable-length Markov chain linkage models. J Comput Biol. 2013;20:199–211.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Popescu AA, Huber KT. PSIKO2: a fast and versatile tool to infer population stratification on various levels in GWAS. Bioinformatics. 2015 (in press).Google Scholar
  18. 18.
    Wang C, Zhan X, Liang L, Abecasis GR, Lin X. Improved ancestry estimation for both genotyping and sequencing data using projection Procrustes analysis and genotype imputation. Am J Hum Genet. 2015;96:926–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Winkler CA, Nelson GW, Smith MW. Admixture mapping comes of age. Annu Rev Genomics Hum Genet. 2010;11:65–89.CrossRefPubMedGoogle Scholar
  20. 20.
    The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.CrossRefGoogle Scholar
  21. 21.
    The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.PubMedCentralCrossRefGoogle Scholar
  23. 23.
    The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–8.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of human populations. Science. 2002;298:2381–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319:1100–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Cavalli-Sforza LL. The Human Genome Diversity Project: past, present and future. Nat Rev Genet. 2005;6:333–40.PubMedGoogle Scholar
  27. 27.
    Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324:1035–44.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Henn BM, Botigué LR, Gravel S, Wang W, Brisbin A, Byrnes JK, et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 2012;8:e1002397.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Pagani L, Kivisild T, Tarekegn A, Ekong R, Plaster C, Gallego Romero I, et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am J Hum Genet. 2012;91:83–96.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, et al. The African Genome Variation Project shapes medical genetics in Africa. Nature. 2015;517:327–32.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Pierron D, Razafindrazaka H, Pagani L, Ricaut F-X, Antao T, Capredon M, et al. Genome-wide evidence of Austronesian-Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar. Proc Natl Acad Sci USA. 2014;111:936–41.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Petersen DC, Libiger O, Tindall EA, Hardie R-A, Hannick LI, Glashoff RH, et al. Complex patterns of genomic admixture within southern Africa. PLoS Genet. 2013;9:e1003309.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    • Shriner D, Tekola-Ayele F, Adeyemo A, Rotimi CN. Genome-wide genotype and sequence-based reconstruction of the 140,000 year history of modern human ancestry. Sci Rep. 2014;4:6055. This study extends Reference 27, providing the most comprehensive catalog of ancestries to date and revealing mixed ancestry in ~94% of individuals around the world. Google Scholar
  34. 34.
    The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.PubMedCentralCrossRefGoogle Scholar
  35. 35.
    The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature. 2012;491:56–65.PubMedCentralCrossRefGoogle Scholar
  36. 36.
    •• The 1000 Genomes Project. Completion of The 1000 genomes project: results, lessons learned, and open questions. American Society of Human Genetics 64th Annual Meeting; 2014 October 18–22, 2014; San Diego, CA. This abstract and forthcoming manuscript describe the completion of the third and final phase of the 1000 Genomes Project, including 2504 individuals from 26 populations. Google Scholar
  37. 37.
    Poznik GD, Henn BM, Yee M-C, Sliwerska E, Euskirchen GM, Lin AA, et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science. 2013;341:562–5.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Keinan A, Clark AG. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science. 2012;336:740–3.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Wollstein A, Lao O, Becker C, Brauer S, Trent RJ, Nürnberg P, et al. Demographic history of Oceania inferred from genome-wide data. Curr Biol. 2010;20:1983–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Kim SK, Gignoux CR, Wall JD, Lum-Jones A, Wang H, Haiman CA, et al. Population genetic structure and origins of Native Hawaiians in the Multiethnic Cohort Study. PLoS ONE. 2012;7:e47881.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    The HUGO Pan-Asian SNP Consortium. Mapping human genetic diversity in Asia. Science. 2009;326:1541–5.CrossRefGoogle Scholar
  42. 42.
    Lipson M, Loh P-R, Patterson N, Moorjani P, Ko Y-C, Stoneking M, et al. Reconstructing Austronesian population history in Island Southeast Asia. Nat Commun. 2014;5:4689.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MHD. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum Mutat. 2014;35:187–91.CrossRefPubMedGoogle Scholar
  44. 44.
    van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2008;30:E386–94.CrossRefGoogle Scholar
  45. 45.
    Ntzani EE, Liberopoulos G, Manolio TA, Ioannidis JPA. Consistency of genome-wide associations across major ancestral groups. Hum Genet. 2012;131:1057–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Deo RC, Reich D, Tandon A, Akylbekova E, Patterson N, Waliszewska A, et al. Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: the Jackson Heart Study. PLoS Genet. 2009;5:e1000342.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Bentley AR, Chen G, Shriner D, Doumatey AP, Zhou J, Huang H, et al. Gene-based sequencing identifies lipid-influencing variants with ethnicity-specific effects in African Americans. PLoS Genet. 2014;10:e1004190.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Shriner D, Herbert A, Doumatey AP, Zhou J, Huang H, Erdos MR, et al. Multiple loci associated with renal function in African Americans. PLoS ONE. 2012;7:e45112.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Nelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337:100–4.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Agarwala V, Flannick J, Sunyaev S, Altshuler D. Evaluating empirical bounds on complex disease genetic architecture. Nat Genet. 2013;45:1418–27.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Lohmueller KE. The impact of population demography and selection on the genetic architecture of complex traits. PLoS Genet. 2014;10:e1004379.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Kaiser J. Genetic influences on disease remain hidden. Science. 2012;338:1016–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Wessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Holmen OL, Zhang H, Zhou W, Schmidt E, Hovelson DH, Langhammer A, et al. No large-effect low-frequency coding variation found for myocardial infarction. Hum Mol Genet. 2014;23:4721–8.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Lee S, Teslovich TM, Boehnke M, Lin X. General framework for meta-analysis of rare variants in sequencing association studies. Am J Hum Genet. 2013;93:42–53.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Lowe JK, Maller JB, Pe’er I, Neale BM, Salit J, Kenny EE, et al. Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae. PLoS Genet. 2009;5:e1000365.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet. 2006;38:1251–60.CrossRefPubMedGoogle Scholar
  59. 59.
    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    The International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.PubMedCentralCrossRefGoogle Scholar
  61. 61.
    • Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLOS Genet. 2013;9:e1003348. This study shows that sample sizes are not yet adequate to use genetic associations in aggregate as polygenic risk scores. Google Scholar
  62. 62.
    Qin H, Morris N, Kang SJ, Li M, Tayo B, Lyon H, et al. Interrogating local population structure for fine mapping in genome-wide association studies. Bioinformatics. 2010;26:2961–8.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Shriner D, Adeyemo A, Ramos E, Chen G, Rotimi CN. Mapping of disease-associated variants in admixed populations. Genome Biol. 2011;12:223.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5. This study describes a method to distinguish small effects expected under polygenicity of complex diseases from those resulting from population stratification. Google Scholar
  65. 65.
    Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet. 2008;82:81–7.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Reich D, Nalls MA, Kao WH, Akylbekova EL, Tandon A, Patterson N, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5:e1000360.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
  68. 68.
    Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Kao WHL, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40:1185–92.CrossRefPubMedGoogle Scholar
  70. 70.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128:345–50.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Behar DM, Kedem E, Rosset S, Haileselassie Y, Tzur S, Kra-Oz Z, et al. Absence of APOL1 risk variants protects against HIV-associated nephropathy in the Ethiopian population. Am J Nephrol. 2011;34:452–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Thomson R, Genovese G, Canon C, Kovacsics D, Higgins MK, Carrington M, et al. Evolution of the primate trypanolytic factor APOL1. Proc Natl Acad Sci USA. 2014;111:E2130–9.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
  75. 75.

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  1. 1.Center for Research on Genomics and Global HealthNational Human Genome Research InstituteBethesdaUSA

Personalised recommendations