Current Genetic Medicine Reports

, Volume 3, Issue 1, pp 35–47 | Cite as

Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia

Reproductive and Developmental Genetics (Z Urban and B Pober, Section Editors)
Part of the following topical collections:
  1. Reproductive and Developmental Genetics

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that predisposes patients to develop direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although the genes responsible for the majority of HHT cases have been known for nearly 20 years, molecular and cellular mechanisms underlying pathogenesis are poorly understood, and the genetic and/or environmental factors that confer variability to age of onset and expressivity of HHT remain unknown. Herein, we review the genetics and genotype/phenotype correlations associated with HHT and summarize data from animal and cell culture models that lend insight into disease mechanism. At present, therapies available to HHT patients for treatment of visceral AVMs are primarily surgical, although antiangiogenic agents show some efficacy in treatment of telangiectasias, epistaxis, and liver AVMs. In light of new mechanistic data on disease pathogenesis, we consider possible approaches for development of more targeted therapeutics for HHT patients.

Keywords

Hereditary hemorrhagic telangiectasia Arteriovenous malformation Activin receptor-like kinase 1 Endoglin Bone morphogenetic protein Angiogenesis 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance; •• Of major importance

  1. 1.
    Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet: EJHG. 2009;17(7):860–71.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.PubMedGoogle Scholar
  3. 3.
    Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189–95.PubMedGoogle Scholar
  4. 4.
    McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-b binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345–51.PubMedGoogle Scholar
  5. 5.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;3(10):616–30.Google Scholar
  6. 6.
    Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-b superfamily. J Biol Chem. 1999;274(2):584–94.PubMedGoogle Scholar
  7. 7.
    Cheifetz S, Bellon T, Cales C, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992;267(27):19027–30.PubMedGoogle Scholar
  8. 8.
    Bayrak-Toydemir P, McDonald J, Markewitz B, et al. Genotype-phenotype correlation in hereditary hemorrhagic telangiectasia: mutations and manifestations. Am J Med Genet Part A. 2006;140(5):463–70.PubMedGoogle Scholar
  9. 9.
    Sabba C, Pasculli G, Lenato GM, et al. Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers. J Thromb haemost JTH. 2007;5(6):1149–57.Google Scholar
  10. 10.
    Letteboer TG, Mager JJ, Snijder RJ, et al. Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006;43(4):371–7.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Letteboer TG, Mager HJ, Snijder RJ, et al. Genotype-phenotype relationship for localization and age distribution of telangiectases in hereditary hemorrhagic telangiectasia. Am J Med Genet Part A. 2008;146A(21):2733–9.PubMedGoogle Scholar
  12. 12.
    Faughnan ME, Granton JT, Young LH. The pulmonary vascular complications of hereditary haemorrhagic telangiectasia. Eur Respir J. 2009;33(5):1186–94.PubMedGoogle Scholar
  13. 13.
    Gallione CJ, Richards JA, Letteboer TG, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43(10):793–7.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280(5366):1086–8.PubMedGoogle Scholar
  15. 15.
    Gallione C, Aylsworth AS, Beis J, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet Part A. 2010;152A(2):333–9.PubMedGoogle Scholar
  16. 16.
    Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet. 2005;42(7):577–82.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet Part A. 2006;140(20):2155–62.PubMedGoogle Scholar
  18. 18.
    •• Benzinou M, Clermont FF, Letteboer TG, et al. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun. 2012;3:616. This paper used the power of mouse genetics to identify the first HHT genetic modifier, PTPN14. Two polymorphisms in this gene were associated with high risk for PAVMs in HHT1 and HHT2 patients. Google Scholar
  19. 19.
    Kawasaki K, Freimuth J, Meyer DS, et al. Genetic variants of Adam17 differentially regulate TGFbeta signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci USA. 2014;111(21):7723–8.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Mallet C, Lamribet K, Giraud S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2014. doi:10.1093/hmg/ddu531.
  21. 21.
    Pece N, Vera S, Cymerman U, White RI Jr, Wrana JL, Letarte M. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. J Clin Invest. 1997;100(10):2568–79.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bourdeau A, Cymerman U, Paquet ME, et al. Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am J Pathol. 2000;156(3):911–23.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Paquet ME, Pece-Barbara N, Vera S, et al. Analysis of several endoglin mutants reveals no endogenous mature or secreted protein capable of interfering with normal endoglin function. Hum Mol Genet. 2001;10(13):1347–57.PubMedGoogle Scholar
  24. 24.
    Ali BR, Ben-Rebeh I, John A, et al. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia. PLoS One. 2011;6(10):e26206.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet. 1997;61(1):68–79.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Forg T, Hafner M, Lux A. Investigation of endoglin wild-type and missense mutant protein heterodimerisation using fluorescence microscopy based IF, BiFC and FRET analyses. PLoS One. 2014;9(7):e102998.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Abdalla SA, Pece-Barbara N, Vera S, et al. Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2. Hum Mol Genet. 2000;9(8):1227–37.PubMedGoogle Scholar
  28. 28.
    Gu Y, Jin P, Zhang L, et al. Functional analysis of mutations in the kinase domain of the TGF-beta receptor ALK1 reveals different mechanisms for induction of hereditary hemorrhagic telangiectasia. Blood. 2006;107(5):1951–4.PubMedGoogle Scholar
  29. 29.
    Ricard N, Bidart M, Mallet C, et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood. 2010;116(9):1604–12.PubMedGoogle Scholar
  30. 30.
    Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet. 2009;18(5):919–30.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Best DH, Vaughn C, McDonald J, et al. Mosaic ACVRL1 and ENG mutations in hereditary haemorrhagic telangiectasia patients. J Med Genet. 2011;48(5):358–60.PubMedGoogle Scholar
  32. 32.
    Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):1534–7.PubMedGoogle Scholar
  33. 33.
    Bourdeau A, Dumont DJ, Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest. 1999;104(10):1343–51.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Arthur HM, Ure J, Smith AJ, et al. Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.PubMedGoogle Scholar
  35. 35.
    Sorensen LK, Brooke BS, Li DY, Urness LD. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol. 2003;261(1):235–50.PubMedGoogle Scholar
  36. 36.
    Nomura-Kitabayashi A, Anderson GA, Sleep G, et al. Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol. 2009;335(1):66–77.PubMedGoogle Scholar
  37. 37.
    Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Jonker L, Arthur HM. Endoglin expression in early development is associated with vasculogenesis and angiogenesis. Mech Dev. 2002;110(1–2):193–6.PubMedGoogle Scholar
  39. 39.
    Mahmoud M, Allinson KR, Zhai Z, et al. Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res. 2010;106(8):1425–33.PubMedGoogle Scholar
  40. 40.
    Torsney E, Charlton R, Diamond AG, Burn J, Soames JV, Arthur HM. Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation. 2003;107(12):1653–7.PubMedGoogle Scholar
  41. 41.
    Satomi J, Mount RJ, Toporsian M, et al. Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia. Stroke. 2003;34(3):783–9.PubMedGoogle Scholar
  42. 42.
    Coulson PS, Wilson RA. Portal shunting and resistance to Schistosoma mansoni in 129 strain mice. Parasitology. 1989;99(Pt 3):383–9.PubMedGoogle Scholar
  43. 43.
    • Choi EJ, Walker EJ, Shen F, et al. Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc Dis. 2012;33(6):540–7. This paper suggests that a very low level of mosaic ENG homozygous deletion in brain endothelial cells, combined with active angiogenesis, can lead to capillary dysplasia. Based on these data, the authors suggest that a second somatic hit in just a few cells might explain the development of telangiectasias and AVMs. Google Scholar
  44. 44.
    Hao Q, Zhu Y, Su H, et al. VEGF induces more severe cerebrovascular dysplasia in endoglin than in Alk1 mice. Transl Stroke Res. 2010;1(3):197–201.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-b1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA. 2000;97(6):2626–31.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet. 2000;26(3):328–31.PubMedGoogle Scholar
  47. 47.
    Srinivasan S, Hanes MA, Dickens T, et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet. 2003;12(5):473–82.PubMedGoogle Scholar
  48. 48.
    Park SO, Wankhede M, Lee YJ, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119(11):3487–96.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Park SO, Lee YJ, Seki T, et al. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood. 2008;111(2):633–42.PubMedCentralPubMedGoogle Scholar
  50. 50.
    • Tual-Chalot S, Mahmoud M, Allinson KR, et al. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS One. 2014;9(6):e98646. This paper compares effects of neonatal Acvrl1 and Eng deletion on the mouse retinal vasculature. Based on differences in molecular and morphological phenotypes, the authors suggest that vessel abnormalities may have different underlying causes. Google Scholar
  51. 51.
    Garrido-Martin EM, Nguyen HL, Cunningham TA, et al. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models—brief report. Arterioscler Thromb Vasc Biol. 2014;34(10):2232–6.PubMedGoogle Scholar
  52. 52.
    • Han C, Choe SW, Kim YH, et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis. 2014;17(4):823–30. This paper demonstrates that VEGF neutralization using the blocking antibody bevacizumab prevents and partially reverses wound-induced subdermal AVM development in a mouse Acvrl1 adult deletion model, supporting the idea that VEGF inhibition may be a useful approach to HHT therapeutics. Google Scholar
  53. 53.
    Walker EJ, Su H, Shen F, et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol. 2011;69(6):954–62.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Corti P, Young S, Chen CY, et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development. 2011;138(8):1573–82.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Roman BL, Pham VN, Lawson ND, et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development. 2002;129(12):3009–19.PubMedGoogle Scholar
  56. 56.
    Castonguay R, Werner ED, Matthews RG, et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem. 2011;286(34):30034–46.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Mitchell D, Pobre EG, Mulivor AW, et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther. 2010;9(2):379–88.PubMedGoogle Scholar
  58. 58.
    Brown MA, Zhao Q, Baker KA, et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem. 2005;280(26):25111–8.PubMedGoogle Scholar
  59. 59.
    David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109(5):1953–61.PubMedGoogle Scholar
  60. 60.
    Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007;120(Pt 6):964–72.PubMedGoogle Scholar
  61. 61.
    Upton PD, Davies RJ, Trembath RC, Morrell NW. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem. 2009;284(23):15794–804.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Nolan-Stevaux O, Zhong W, Culp S, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One. 2012;7(12):e50920.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Townson SA, Martinez-Hackert E, Greppi C, et al. Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem. 2012;287(33):27313–25.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Alt A, Miguel-Romero L, Donderis J, et al. Structural and functional insights into endoglin ligand recognition and binding. PLoS One. 2012;7(2):e29948.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Sengle G, Ono RN, Sasaki T, Sakai LY. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem. 2011;286(7):5087–99.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Bidart M, Ricard N, Levet S, et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci. 2012;69(2):313–24.PubMedGoogle Scholar
  67. 67.
    •• Chen H, Brady Ridgway J, Sai T, et al. Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc Natl Acad Sci USA. 2013;110(29):11887–92. This paper demonstrates AVM development in mouse Bmp10 null mice, strongly supporting the critical role of this ALK1 ligand in the embryonic vasculature. The authors also demonstrate that bmp9 can compensate for bmp10 loss in the vasculature, implying functional redundancy after the onset of bmp9 expression at E9.75. Google Scholar
  68. 68.
    Chen H, Shi S, Acosta L, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131(9):2219–31.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Ricard N, Ciais D, Levet S, et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood. 2012;119(25):6162–71.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Laux DW, Young S, Donovan JP, Mansfield CJ, Upton PD, Roman BL. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development. 2013;140(16):3403–12.PubMedCentralPubMedGoogle Scholar
  71. 71.
    • Wooderchak-Donahue WL, McDonald J, O’Fallon B, et al. BMP9 Mutations Cause a Vascular-Anomaly Syndrome with Phenotypic Overlap with Hereditary Hemorrhagic Telangiectasia. Am J Hum Genet. 2013;93(3):530–7. This paper identifies BMP9 mutations in patients with a mild HHT-like condition, supporting the idea that BMP9 is an important ALK1 ligand. Google Scholar
  72. 72.
    Kim JH, Peacock MR, George SC, Hughes CC. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis. 2012;15(3):497–509.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Larrivee B, Prahst C, Gordon E, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 2012;22(3):489–500.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–14.PubMedGoogle Scholar
  75. 75.
    Adams RH, Wilkinson GA, Weiss C, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 1999;13(3):295–306.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Lawson ND, Scheer N, Pham VN, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128(19):3675–83.PubMedGoogle Scholar
  77. 77.
    Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004;18(20):2469–73.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Krebs LT, Starling C, Chervonsky AV, Gridley T. Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis. 2010;48(3):146–50.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Benedito R, Trindade A, Hirashima M, et al. Loss of Notch signalling induced by Dll4 causes arterial calibre reduction by increasing endothelial cell response to angiogenic stimuli. BMC Dev Biol. 2008;8:117.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Carlson TR, Yan Y, Wu X, et al. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci USA. 2005;102(28):9884–9.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004;18(20):2474–8.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Morikawa M, Koinuma D, Tsutsumi S, et al. ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res. 2011;39(20):8712–27.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Young K, Conley B, Romero D, et al. BMP9 regulates endoglin-dependent chemokine responses in endothelial cells. Blood. 2012;120(20):4263–73.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Park JE, Shao D, Upton PD, et al. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production. PLoS One. 2012;7(1):e30075.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Packham IM, Gray C, Heath PR, et al. Microarray profiling reveals CXCR4a is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos. Physiol Genomics. 2009;38(3):319–27.PubMedGoogle Scholar
  86. 86.
    Melchionna R, Porcelli D, Mangoni A, et al. Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis. Faseb J. 2005;19(6):629–31.PubMedGoogle Scholar
  87. 87.
    Wang DL, Tang CC, Wung BS, Chen HH, Hung MS, Wang JJ. Cyclical strain increases endothelin-1 secretion and gene expression in human endothelial cells. Biochem Biophys Res Commun. 1993;195(2):1050–6.PubMedGoogle Scholar
  88. 88.
    Yoshizumi M, Kurihara H, Sugiyama T, et al. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun. 1989;161(2):859–64.PubMedGoogle Scholar
  89. 89.
    Poirier O, Ciumas M, Eyries M, Montagne K, Nadaud S, Soubrier F. Inhibition of apelin expression by BMP signaling in endothelial cells. Am J Physiol Cell Physiol. 2012;303(11):C1139–45.PubMedGoogle Scholar
  90. 90.
    Del Toro R, Prahst C, Mathivet T, et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood. 2010;116(19):4025–33.PubMedGoogle Scholar
  91. 91.
    Cheng X, Cheng XS, Pang CC. Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol. 2003;470(3):171–5.PubMedGoogle Scholar
  92. 92.
    Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci. 2010;123(Pt 10):1684–92.PubMedGoogle Scholar
  93. 93.
    David L, Mallet C, Keramidas M, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008;102(8):914–22.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Choi EJ, Kim YH, Choe SW, et al. Enhanced responses to angiogenic cues underlie the pathogenesis of hereditary hemorrhagic telangiectasia 2. PLoS One. 2013;8(5):e63138.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Cunha SI, Pardali E, Thorikay M, et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med. 2010;207(1):85–100 S101–5.PubMedCentralPubMedGoogle Scholar
  96. 96.
    van Meeteren LA, Thorikay M, Bergqvist S, et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem. 2012;287(22):18551–61.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Hao Q, Su H, Marchuk DA, et al. Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol. 2008;295(6):H2250–6.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003;93(7):682–9.PubMedGoogle Scholar
  99. 99.
    Walker EJ, Su H, Shen F, et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke. 2012;43(7):1925–30.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Cirulli A, Liso A, D’Ovidio F, et al. Vascular endothelial growth factor serum levels are elevated in patients with hereditary hemorrhagic telangiectasia. Acta Haematol. 2003;110(1):29–32.PubMedGoogle Scholar
  101. 101.
    Sadick H, Naim R, Sadick M, Hormann K, Riedel F. Plasma level and tissue expression of angiogenic factors in patients with hereditary hemorrhagic telangiectasia. Int J Mol Med. 2005;15(4):591–6.PubMedGoogle Scholar
  102. 102.
    Sadick H, Riedel F, Naim R, et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica. 2005;90(6):818–28.PubMedGoogle Scholar
  103. 103.
    Mitchell A, Adams LA, MacQuillan G, Tibballs J, vanden Driesen R, Delriviere L. Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transplant. 2008;14(2):210–3.Google Scholar
  104. 104.
    Dupuis-Girod S, Ginon I, Saurin JC, et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA. 2012;307(9):948–55.PubMedGoogle Scholar
  105. 105.
    Chavan A, Schumann-Binarsch S, Luthe L, et al. Systemic therapy with bevacizumab in patients with hereditary hemorrhagic telangiectasia (HHT). VASA. Zeitschrift fur Gefasskrankheiten. 2013;42(2):106–10.PubMedGoogle Scholar
  106. 106.
    Simonds J, Miller F, Mandel J, Davidson TM. The effect of bevacizumab (Avastin) treatment on epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope. 2009;119(5):988–92.PubMedGoogle Scholar
  107. 107.
    Davidson TM, Olitsky SE, Wei JL. Hereditary hemorrhagic telangiectasia/avastin. Laryngoscope. 2010;120(2):432–5.PubMedGoogle Scholar
  108. 108.
    Karnezis TT, Davidson TM. Efficacy of intranasal Bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope. 2011;121(3):636–8.PubMedGoogle Scholar
  109. 109.
    Karnezis TT, Davidson TM. Treatment of hereditary hemorrhagic telangiectasia with submucosal and topical bevacizumab therapy. Laryngoscope. 2012;122(3):495–7.PubMedGoogle Scholar
  110. 110.
    Rohrmeier C, Sachs HG, Kuehnel TS. A retrospective analysis of low dose, intranasal injected bevacizumab (Avastin) in hereditary haemorrhagic telangiectasia. Eur Arch Otorhinolaryngol. 2012;269(2):531–6.PubMedGoogle Scholar
  111. 111.
    Thompson AB, Ross DA, Berard P, Figueroa-Bodine J, Livada N, Richer SL. Very low dose bevacizumab for the treatment of epistaxis in patients with hereditary hemorrhagic telangiectasia. Allergy Rhinol. 2014;5(2):e91–e95.Google Scholar
  112. 112.
    Riss D, Burian M, Wolf A, Kranebitter V, Kaider A, Arnoldner C. Intranasal submucosal bevacizumab for epistaxis in hereditary hemorrhagic telangiectasia: a double-blind, randomized, placebo-controlled trial. Head Neck. 2014; doi:10.1002/hed.23655.PubMedGoogle Scholar
  113. 113.
    Dupuis-Girod S, Ambrun A, Decullier E, et al. ELLIPSE study: a phase 1 study evaluating the tolerance of bevacizumab nasal spray in the treatment of epistaxis in hereditary hemorrhagic telangiectasia. mAbs. 2014;6(3):794–9.PubMedGoogle Scholar
  114. 114.
    Lebrin F, Srun S, Raymond K, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med. 2010;16(4):420–8.PubMedGoogle Scholar
  115. 115.
    Alam MA, Sami S, Babu S. Successful treatment of bleeding gastro-intestinal angiodysplasia in hereditary haemorrhagic telangiectasia with thalidomide. BMJ Case Rep. 2011; doi:10.1136/bcr.08.2011.4585.Google Scholar
  116. 116.
    Wang XY, Chen Y, Du Q. Successful treatment of thalidomide for recurrent bleeding due to gastric angiodysplasia in hereditary hemorrhagic telangiectasia. Eur Rev Med Pharmacol Sci. 2013;17(8):1114–6.PubMedGoogle Scholar
  117. 117.
    Gaillard S, Dupuis-Girod S, Boutitie F, et al. Tranexamic acid for epistaxis in hereditary hemorrhagic telangiectasia patients: a European cross-over controlled trial in a rare disease. J Thromb Haemost JTH. 2014;12(9):1494–502.Google Scholar
  118. 118.
    Geisthoff UW, Seyfert UT, Kubler M, Bieg B, Plinkert PK, Konig J. Treatment of epistaxis in hereditary hemorrhagic telangiectasia with tranexamic acid—a double-blind placebo-controlled cross-over phase IIIB study. Thromb Res. 2014;134(3):565–71.PubMedGoogle Scholar
  119. 119.
    Zaffar N, Ravichakaravarthy T, Faughnan ME, Shehata N. The use of anti-fibrinolytic agents in patients with HHT: a retrospective survey. Ann Hematol. 2014. doi:10.1007/s00277-014-2169-y.
  120. 120.
    Saba HI, Morelli GA, Logrono LA. Brief report: treatment of bleeding in hereditary hemorrhagic telangiectasia with aminocaproic acid. N Engl J Med. 1994;330(25):1789–90.PubMedGoogle Scholar
  121. 121.
    Penaloza A, Vekemans MC, Lambert C, Hermans C. Deep vein thrombosis induced by thalidomide to control epistaxis secondary to hereditary haemorrhagic telangiectasia. Blood Coagul Fibrinolysis. 2011;22(7):616–8.PubMedGoogle Scholar
  122. 122.
    Jameson JJ, Cave DR. Hormonal and antihormonal therapy for epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope. 2004;114(4):705–9.PubMedGoogle Scholar
  123. 123.
    Yaniv E, Preis M, Hadar T, Shvero J, Haddad M. Antiestrogen therapy for hereditary hemorrhagic telangiectasia: a double-blind placebo-controlled clinical trial. Laryngoscope. 2009;119(2):284–8.PubMedGoogle Scholar
  124. 124.
    Yaniv E, Preis M, Shevro J, Nageris B, Hadar T. Anti-estrogen therapy for hereditary hemorrhagic telangiectasia—a long-term clinical trial. Rhinology. 2011;49(2):214–6.PubMedGoogle Scholar
  125. 125.
    Wang T, Donahoe PK. The immunophilin FKBP12: a molecular guardian of the TGF-beta family type I receptors. Front Biosci. 2004;9:619–31.PubMedGoogle Scholar
  126. 126.
    Albinana V, Sanz-Rodriguez F, Recio-Poveda L, Bernabeu C, Botella LM. Immunosuppressor FK506 increases endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-beta1 signaling in endothelial cells. Mol Pharmacol. 2011;79(5):833–43.PubMedGoogle Scholar
  127. 127.
    Skaro AI, Marotta PJ, McAlister VC. Regression of cutaneous and gastrointestinal telangiectasia with sirolimus and aspirin in a patient with hereditary hemorrhagic telangiectasia. Ann Intern Med. 2006;144(3):226–7.PubMedGoogle Scholar
  128. 128.
    •• Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123(8):3600–13. This paper demonstrates efficacy of FK506 in rescuing pulmonary arterial hypertension, which is caused by decreased BMP signaling, in a mouse model. Because FK506 can increase activity of ALK1, this dug may also be useful as an HHT therapeutic. Google Scholar
  129. 129.
    Seki T, Hong KH, Yun J, Kim SJ, Oh SP. Isolation of a regulatory region of activin receptor-like kinase 1 gene sufficient for arterial endothelium-specific expression. Circ Res. 2004;94(8):e72–7.PubMedGoogle Scholar
  130. 130.
    Garrido-Martin EM, Blanco FJ, Fernandez LA, et al. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol Biol. 2010;11:51.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Garrido-Martin EM, Blanco FJ, Roque M, et al. Vascular injury triggers Kruppel-like factor 6 (KLF6) mobilization and cooperation with Sp1 to promote endothelial activation through upregulation of the activin receptor-like kinase 1 (ALK1) Gene. Circ Res. 2012;112:113–27.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2014

Authors and Affiliations

  1. 1.University of Pittsburgh Graduate School of Public HealthPittsburghUSA

Personalised recommendations