Advertisement

Anesthetic Care for the Post-concussive Patient: There Are More Questions Than Answers

  • 1 Accesses

Abstract

Purpose of Review

This review informs the practicing clinician regarding the pathophysiology of mild traumatic brain injury and its implication on the anesthetic management of patients presenting for surgery. It highlights several areas where data is sparse that might spark the interest of researchers. It proposes a broad guideline for managing patients who present for surgery.

Recent Findings

The post-concussive brain has a vulnerable window of risk in which secondary insult might worsen long-term outcome. Scheduling elective surgery beyond this window of vulnerability might be beneficial. Several biomarkers may prove to be helpful in determining the timing of elective surgery and in risk stratification for the patient undergoing urgent or emergent surgery.

Summary

Mild traumatic brain injury is common. Patients often present in the acute care setting for surgical procedures unrelated to their head injury. The care of these patients may influence the natural history of their intracranial pathology and may impact long-term outcomes. In this review, we provide a brief synopsis of the pathophysiology of this disease. We discuss potential anesthetic interactions, offer broad guidelines for anesthetic management based on available data, and suggest areas of future research.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

    Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

    1. 1.

      •• Signoretti S, et al. The pathophysiology of concussive brain injury. In: Bigler ED, Victoroff J, editors. Concussion and traumatic encephalopathy: causes, diagnosis and management: Cambridge University Press, Cambridge; 2019. p. 138–52. A book chapter authored by a well-published researcher in the field of TBI summarizing the pathophysiology of concussion in a nutshell; excellent reading for the clinician desiring a more in-depth understanding of the subject.

    2. 2.

      •• McCrory P, et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;5(11):838–47 Expert consensus statement on diagnosis and management of sports-related concussion.

    3. 3.

      Cassidy JD, et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004;(43 Suppl):28–60.

    4. 4.

      DVBIC. 2018 DVBIC Annual Report 2018; Available from: https://dvbic.dcoe.mil/system/files/2018_DVBIC_Annual_Report_508.pdf.

    5. 5.

      Agimi Y, Regasa LE, Stout KC. Incidence of traumatic brain injury in the U.S. military, 2010-2014. Mil Med. 2019;184(5–6):e233–41.

    6. 6.

      •• Choe MC. The pathophysiology of concussion. Curr Pain Headache Rep. 2016;20(6):42 Excellent review paper on the pathophysiology and clinical features on concussion.

    7. 7.

      Centers for Disease Control and Prevention. (2018). Report to congress: the management of traumatic brain injury in children, National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA. Management of traumatic brain injury in children: opportunities for action. 2018; Available from: https://www.cdc.gov/traumaticbraininjury/pdf/reportstocongress/managementoftbiinchildren/TBI-ReporttoCongress-508.pdf.

    8. 8.

      Tator CH, Davis HS, Dufort PA, Tartaglia MC, Davis KD, Ebraheem A, et al. Postconcussion syndrome: demographics and predictors in 221 patients. J Neurosurg. 2016;125(5):1206–16.

    9. 9.

      Boake C, McCauley S, Levin HS, Pedroza C, Contant CF, Song JX, et al. Diagnostic criteria for postconcussional syndrome after mild to moderate traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2005;17(3):350–6.

    10. 10.

      Polinder S, et al. A multidimensional approach to post-concussion symptoms in mild traumatic brain injury. Front Neurol. 2018;9:1113.

    11. 11.

      • Nelson LD, et al. Recovery after mild traumatic brain injury in patients presenting to US level I trauma centers: a Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study. JAMA Neurol. 2019; A large, multi-center prospective observational study chronicling long-term disability from “mild” TBI.

    12. 12.

      Stein MB, Jain S, Giacino JT, Levin H, Dikmen S, Nelson LD, et al. Risk of posttraumatic stress disorder and major depression in civilian patients after mild traumatic brain injury: a TRACK-TBI study. JAMA Psychiatry. 2019;76(3):249–58.

    13. 13.

      Fralick M, Thiruchelvam D, Tien HC, Redelmeier DA. Risk of suicide after a concussion. CMAJ. 2016;188(7):497–504.

    14. 14.

      Humphreys I, Wood RL, Phillips CJ, Macey S. The costs of traumatic brain injury: a literature review. Clinicoecon Outcomes Res. 2013;5:281–7.

    15. 15.

      Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    16. 16.

      Fehily B, Fitzgerald M. Repeated mild traumatic brain injury: potential mechanisms of damage. Cell Transplant. 2017;26(7):1131–55.

    17. 17.

      Len TK, Neary JP. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging. 2011;31(2):85–93.

    18. 18.

      Strebel S, Lam AM, Matta BF, Newell DW. Impaired cerebral autoregulation after mild brain injury. Surg Neurol. 1997;47(2):128–31.

    19. 19.

      Junger EC, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.

    20. 20.

      Meier TB, Bellgowan PS, Singh R, Kuplicki R, Polanski DW, Mayer AR. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015;72(5):530–8.

    21. 21.

      Blake TA, McKay C, Meeuwisse WH, Emery CA. The impact of concussion on cardiac autonomic function: a systematic review. Brain Inj. 2016;30(2):132–45.

    22. 22.

      Bishop SA, Dech RT, Guzik P, Neary JP. Heart rate variability and implication for sport concussion. Clin Physiol Funct Imaging. 2018;38(5):733–42.

    23. 23.

      Abcejo AS, Savica R, Lanier WL, Pasternak JJ. Exposure to surgery and anesthesia after concussion due to mild traumatic brain injury. Mayo Clin Proc. 2017;92(7):1042–52.

    24. 24.

      Vavilala MS, Ferrari LR, Herring SA. Perioperative care of the concussed patient: making the case for defining best anesthesia care. Anesth Analg. 2017;125(3):1053–5.

    25. 25.

      •• Tator C, et al. Fatal Second Impact Syndrome in Rowan Stringer, a 17-year-old rugby player. Can J Neurol Sci. 2019;46(3):351–4 Heart-breaking case report illustrating the vulnerability of the post-concussed brain.

    26. 26.

      Algarra NN, et al. Intraoperative secondary insults during orthopedic surgery in traumatic brain injury. J Neurosurg Anesthesiol. 2017;29(3):228–35.

    27. 27.

      Fujita Y, et al. Intraoperative secondary insults during extracranial surgery in children with traumatic brain injury. Childs Nerv Syst. 2014;30(7):1201–8.

    28. 28.

      Cantu RC. Dysautoregulation/second-impact syndrome with recurrent athletic head injury. World Neurosurg. 2016;95:601–2.

    29. 29.

      Vagnozzi R, et al. Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence. Neurosurgery. 2005;57(1):164–71 discussion 164-71.

    30. 30.

      Vagnozzi R, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes--part III. Neurosurgery. 2008;62(6):1286–95 discussion 1295-6.

    31. 31.

      Asken BM, Bauer RM, DeKosky S, Houck ZM, Moreno CC, Jaffee MS, et al. Concussion BASICS II: baseline serum biomarkers, head impact exposure, and clinical measures. Neurology. 2018;91(23):e2123–32.

    32. 32.

      Asken BM, et al. Concussion biomarkers assessed in collegiate student-athletes (BASICS) I: normative study. Neurology. 2018;91(23):e2109–22.

    33. 33.

      Asken BM, Bauer RM, DeKosky S, Svingos AM, Hromas G, Boone JK, et al. Concussion BASICS III: serum biomarker changes following sport-related concussion. Neurology. 2018;91(23):e2133–43.

    34. 34.

      Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David JS, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125(2):346–54.

    35. 35.

      Brooks MA, Bazarian JJ, Prichep LS, Dastidar SG, Talavage TM, Barr W. The use of an electrophysiological brain function index in the evaluation of concussed athletes. J Head Trauma Rehabil. 2018;33(1):1–6.

    36. 36.

      • Carteron L, Taccone FS, Oddo M. How to manage blood pressure after brain injury? Minerva Anestesiol. 2017;83(4):412–21 Useful guide to BP management following a variety of brain injury.

    37. 37.

      Spaite DW, Hu C, Bobrow BJ, Chikani V, Barnhart B, Gaither JB, et al. The effect of combined out-of-hospital hypotension and hypoxia on mortality in major traumatic brain injury. Ann Emerg Med. 2017;69(1):62–72.

    38. 38.

      Mutch WAC, et al. End-tidal hypocapnia under anesthesia predicts postoperative delirium. Front Neurol. 2018;9:678.

    39. 39.

      Algarra N. Should we administer glucose to the traumatic brain injury or subarachnoid hemorrhage patient? Minerva Anestesiol. 2019;85(8):809–11.

    Download references

    Author information

    Correspondence to Paul Audu.

    Ethics declarations

    Conflict of Interest

    Paul Audu, Vanessa Oforiwa Aboagye, and Keyur Trivedi declare they have no conflict of interest.

    Human and Animal Rights and Informed Consent

    This article does not contain any studies with human or animal subjects performed by any of the authors.

    Additional information

    Publisher’s Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Anesthesia for Trauma

    Rights and permissions

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Audu, P., Aboagye, V.O. & Trivedi, K. Anesthetic Care for the Post-concussive Patient: There Are More Questions Than Answers. Curr Anesthesiol Rep (2020) doi:10.1007/s40140-020-00365-x

    Download citation

    Keywords

    • Mild traumatic brain injury
    • Concussion
    • Sports-related concussion (SRC)
    • Concussive brain injury
    • Anesthetic management
    • Second impact syndrome (SIS)
    • Post-concussion syndrome (PCS)