Advertisement

The Challenge of Perioperative Fluid Management in Elderly Patients

  • Birgitte BrandstrupEmail author
  • Ann M. Møller
Geriatric Anesthesia (S Akhtar, Section Editor)
  • 18 Downloads
Part of the following topical collections:
  1. Topical Collection on Geriatric Anesthesia

Abstract

Purpose of Review

The purpose of this chapter is to describe physiological changes occurring with age relevant to fluid therapy, and to discuss the influence of fluid therapy on outcome of surgery from this perspective.

Recent Findings

Dehydration, common among elderly people, is often mistaken for dementia or depression. Dehydration with dizziness increases the risk of falling, a predictor for adverse outcomes after surgery.

Young volunteers can excrete up to 300 mmol sodium per liter urine. Elderly people cannot achieve such a concentration emphasizing the importance of giving water to excrete the osmoles given with intravenous crystalloids.

Brain natriuretic peptide increases in cardiac disease and with age. Preoperative elevated levels predict adverse outcomes following surgery.

Summary

The evidence and the physiology show that elderly patients benefit from a thorough regulation of fluid therapy keeping fluid balance close to zero (no more than 2 l positive) and with sufficient glucose and water supply.

Keywords

Dehydration Kidney function Salt excretion Urine concentration Sodium excretion Fluid therapy Restricted fluid therapy Zero-balance fluid therapy Fluid overload Complications Surgery Abdominal surgery Gastrointestinal surgery N-terminal pro-B natriuretic peptide Cardiac complications Changes with age Elderly patients 

Notes

Compliance with Ethical Standards

Conflict of Interest

Birgitte Brandstrup and Ann M. Møller declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any new data studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    World Health Organization. World report on aging and health. 2015. https://apps.who.int/iris/bitstream/handle/10665/186463/9789240694811_eng.pdf. Accessed 5 May 2019
  2. 2.
    Lawler M, Selby P, Aaparo MS, Duffy S. Ageism in cancer care: time to change the mindset. BMJ. 2014;348:g1614.CrossRefPubMedGoogle Scholar
  3. 3.
    •• Montroni I, Ugolini G, Saur, et al. Personalized management of elderly patients with rectal cancer: expert recommendations of the European Society of Surgical Geriatric Oncology, and American College of Surgeons Comission on Cancer. Eur J Surg Oncol. 2018;44:1685–702 This is a paper describing the currently best treatment for elderly patients with rectal cancer in an ERAS program. CrossRefPubMedGoogle Scholar
  4. 4.
    Wakefield BJ, Mentes J, Holman JE, Culp K. Risk factors and outcomes associated with hospital admission for dehydration. Rehab Nurs. 2008;33(6):233–41.CrossRefGoogle Scholar
  5. 5.
    Marshall KA, Burson R, Gall K, Saunders MM. Hospital admission for malnutrition and dehydration in patients with dementia. Home Healthc Now. 2016;34(1):32–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Phillips PA, Rolls BJ, Ledingham JGG, Forsling ML, Morton JJ, Crowe MJ, et al. Reduced thirst after water deprivation in healthy elderly men. New Engl J Med. 1984;311(12):753–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Chan SP, Ip KY, Irvin MG. Perioperative optimisation of elderly and frail patients: a narrative review. Anaesthesia. 2019;74(Suppl. 1):80–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Payton P, Shook JE. Perioperative understanding of geriatric patients. Clin Podiatr Med Surg. 2019;36:131–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Dasgupta M, Rolfson DB, Stolee P, Borrie MJ, Speechley M. Frailty is associated with postoperative complications in older adults with medical problems. Arch Gerontol Geriatr. 2007;48:78–83.CrossRefGoogle Scholar
  10. 10.
    Li JL, Henderson MA, Revenig LM, et al. Frailty and one-year mortality in major intra-abdominal operations. J Surg Res. 2019;203:507–12.CrossRefGoogle Scholar
  11. 11.
    Giannotti C, Sambuceti S, Signori A, et al. Frailty assessment in elective gastrointestinal oncogeriatric surgery: predictors of one-year mortality and functional status. J Geriatr Oncol. 2019.  https://doi.org/10.1016/j.jgo.2019.04.017.
  12. 12.
    Overgaard-Steensen C, Ring T. Clinical review: Practical approach to hyponatriaemia and hypernatriaemia in critically ill patients. Crit Care. 2013;17:206.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis. 2010;17(4):302–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Beck LH. Perioperative renal, fluid and electrolyte mangement. Clin Geriatr Med. 1990;6(3):557–69.CrossRefPubMedGoogle Scholar
  15. 15.
    Rowe JW, Shock NW, DeFonzo RA. The influence of age on the renal responce to water deprivation in man. Nephron. 1976;17(4):270–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Drummer C, Gerzer R, Heer M, et al. Effect of an acute saline infusion on fluid and electrolyte metabolism in humans. Am J Phys. 1992;262(5):F744–54.Google Scholar
  17. 17.
    Gamble JL. Physiological information gained from studies on the life raft ration. Harvey Lect. 1947;42:247–73.Google Scholar
  18. 18.
    Prough IC, Baker EM. Maximum physiological concentration of sodium in human urine. J Appl Physiol. 1959;14(6):1036–8.CrossRefGoogle Scholar
  19. 19.
    Weaver CM, Martin BR, McCabe GP, et al. Individual variation in urinary sodium excretion among adolescent girls on a fixed intake. J Hypertens. 2016;34:1290–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Blichert-Toft M, Christensen V, Engquist A, Fog-Moller F, Kehlet H, Madsen SN, et al. Influence of age on the endocrine-metabolic responce to surgery. Ann Surg. 1979;190(6):761–70.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kudoh A, Ishihara H, Matsuki A. Renin-aldosterone system and atrial natriuretic peptide during anesthesia in orthopedic patients over 80 years of age. J Clin Anesth. 1999;11:101–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Witthaut R. Science review: natriuretic peptides in critical illness. Crit Care. 2004;8(5):342–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Karthikeyan G, Moncur RA, Levine O, et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? J Am Coll Cardiol. 2009;54(17):1599–606.CrossRefPubMedGoogle Scholar
  24. 24.
    Rodseth RN, Biccard BM, Manach YL, et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery. B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: a systematic review and individual patient data meta-analysis. J Am Coll Cardiol. 2014;63(2):170–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Cai GL, Chen J, Hu CB, Yan ML, Xu QH, Yan J. Value of plasma brain natriuretic peptide levels for predicting postoperative atrial fibrillation: a systemic review and meta-analysis. World J Surg. 2014;38:51–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Ryding ADS, Kumar S, Worthington AM, Burgess D. Prognostic value of brain natriuretic peptide in noncardiac surgery. A meta-analysis. Aneshsiology. 2009;111:311–9.CrossRefGoogle Scholar
  27. 27.
    Yang JH, Choi JH, Ki YW, Kim DI, Kim DK, Park JR, et al. Plasma N-terminal pro-B-type natriuretic peptide is predictive of perioperative cardiac events in patients undergoing vascular surgery. Korean J Intern Med. 2012;27:301–10.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rajagopalan S, Croal BL, Reeve J, Bachoo P, Brittenden J. N-terminal pro-B-type natriuretic peptide is an independant predictor of all-cause mortality and MACE after major vascular surgery in medium-term follow-up. Eur J Vasc Endovasc Surg. 2011;41:657–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Goei D, van Kuijk JP, Flu WJ, Hoeks SE, Chonchol M, Verhagen HJ, et al. Usefulness of repeated N-terminal pro-B-type natriuretic peptide measurements as incremental predictor for longterm cardiovascular outcome after vascular surgery. Am J Cardiol. 2011;107(4):609–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Scrutinio D, Guido G, Guida P, et al. Combined use of high-sensitivity C-reactive protein and N-terminal pro-B-type peptide for risk stratification of vascular surgery patients. Ann Vasc Surg. 2014;28(6):1522–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Oscarsson A, Fredrikson M, Sörliden M, Anskär S, Eintrei C. N-terminal fragment of pro-B-type natriuretic peptide is a predictor of cardiac events in high-risk patients undergoing acute hip fracture surgery. Br J Anaesth. 2009;103(2):206–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Chong CP, Ryan JE, Van Gaal WJ, et al. Usefulness of N-terminal Pro-brain natriuretic peptide to predict postoperative cardiac complications and long-term mortality after emergency lower limb orthopedic surgery. Am J Cardiol. 2010;106(6):865–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Nordling P, Kiviniemi T, Strandberg M, Strandberg N, Airaksinen J. Predicting the outcome of hip fracture patients by using N-terminal fragment of pro-B-type natriuretic peptide. BMJ Open. 2016;6:e009416.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cornell CN. CORR insights: does N-terminal pro-brain type natriuretic peptide predict cardiac complications after hip fracture surgery? Clin Orthop Relat Res. 2017;475:1737–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Manikandan R, Nathaniel C, Lewis P, Brough RJ, Adeyoju A, Brown SC, et al. Tropionin T and N-terminal natriuretic peptide changes in patients undergoing transurethral resection of the prostate. J Urol. 2005;174(5):1892–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Hou JL, Gao K, Li M, Ma JY, Shi YK, Wang Y, et al. Increased N-terminal pro-brain natriuretic peptide level predicts atrial fibrillation after surgery for esophageal carcinoma. World J Gastroenterol. 2008;14(16):2582–5.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yeh HM, Lau HP, Lin JM, Sun WZ, Wang MJ, Lai LP. Preoperative plasma N-terminal pro-brain natriuretic peptide as a marker of cardiac risk in patients undergoing elective non-cardiac surgery. Br J Surg. 2005;92:1041–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Farzi S, Stojakovic T, Marko T, Sankin C, Rehak P, Gumpert R, et al. Role of N-terminal pro B-type natriuretic peptide in identifying patients at high risk for adverse outcome after emergent non-cardiac surgery. Br J Anaesth. 2013;110(4):554–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim IJ, Moon JY, Ko EJ, Lim YM, Kim SH, Yang WI, et al. Prognostic value of preoperative N-terminal pro-brain natriuretic peptide in non-cardiac surgery of elderly patients with normal left ventricular systolic function. Geriatr Gerontol Int. 2016;16:1109–16.CrossRefPubMedGoogle Scholar
  40. 40.
    Borges FK, Furtadu MV, Rossini APW, et al. Prognostiv value of perioperative n-terminal pro-B-type natriuretic peptide in noncardiac surgery. Arq Bras Cardiol. 2013;100(6):561–70.PubMedGoogle Scholar
  41. 41.
    Januzzi JL, Chen-Tournoux AA, Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008;101(3A):29A–38A.CrossRefGoogle Scholar
  42. 42.
    Roberts E, Ludman AJ, Dworzynski K, et al. The diagnostic accuracy of natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ. 2015;350(h910):1–16.Google Scholar
  43. 43.
    Kumar S, Khosravi M, Massart A, Davenport A. Is there a role for N-terminal probrain-type natriuretic peptide in determining volume status in haemodialysis patients? Nephron Clin Pract. 2012;122(1-2):33–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Haines R, Crichton S, Wilson D, Treacher D, Ostermann M. Cardiac biomarkers are associated with maximum stage of acute kidney injury in critically ill patients: a prospective analysis. Crit Care. 2017;21:88–96.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Velasco N, Chamney P, Wabel P, Moissl U, Imtiaz T, Spalding E, et al. Optimal fluid control can normalize cardiovascular risk markers and limit left ventricular hypertrophy in thrice weekly dialysis patients. Hemodial Int. 2012;16:465–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsai YC, Tsai HJ, Lee CS, et al. The interaction between N-terminal pro-brain natriuretic peptide and fluid status in adverse clinical outcomes of late stages of cronic kidney disease. PLoS One. 2018.  https://doi.org/10.1371/journal.pone.0202733.
  47. 47.
    Chen H, Wu B, Gong D, Liu Z. Fluid overload at start of continous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combindes use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement. Crit Care. 2015;19:135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kawagoe C, Sato Y, Toida T, et al. N-terminal-pro-B-type-natriuretic peptide associated with 2-year mortality from both cardiovascular and non-cardiovascular origins in prevalent chronic hemodialysis patients. Ren Fail. 2019;40(1):127–34.CrossRefGoogle Scholar
  49. 49.
    Lang CC, Choy AM, Turner K, Tobin R, Coutie W, Struthers AD. The effect of intravenous saline loading on plasma levels of brain natriuretic peptide in man. J Hypertens. 1993;11(7):737–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Wambach G, Koch J. BNP plasma levels during acute volume expansion and chronic sodium loading in normal men. Clin Exp Hypertens. 1995;17(4):619–29.CrossRefPubMedGoogle Scholar
  51. 51.
    Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatine (gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med. 2010;38(2):464–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Bihari S, Wiersema UF, Schembri D, et al. Bolus intravenous 0.9% saline, but not 4% albumin or 5% glucose, causes interstitial pulmpnary edema in helathy subjects. J Appl Physiol (1985). 2015;119(7):783–92.CrossRefGoogle Scholar
  53. 53.
    Gillies MA, Shah ASV, Mullenheim J, et al. Perioperative myocardial injury in patients receiving cardiac output-guided haemodynamic therapy: a substudy of the OPTIMISE Trial. Br J Anaesth. 2015;115(2):227–33.CrossRefPubMedGoogle Scholar
  54. 54.
    Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens. A randomized assessor blinded multi centre trial. Ann Surg. 2003;238(5):641–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brandstrup B, Beier-Holgersen R, Iversen LH et al. The influence of fluid therapy on N-terminal-pro-brain natriuretic peptide and the association with heart and lung komplications in patients undergoing colorectal surgery. Secondary results of a clinical randomized assessor-blinded multicentre trial. 2019. Submitted for publicationGoogle Scholar
  56. 56.
    Brandstrup B, Svendsen C, Engquist A. Hemorrhage and operation cause a contraction of the extra cellular space needing replacement — evidence and implications? A systematic review. Surgery. 2006;139(3):419–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Warrillow SJ, Weinberg L, Parker F, Calzavacca P, Licari E, Aly A, et al. Perioperative fluid prescription, complications and outcomes in major elective open gastrointestinal surgery. Anaesth Intensive Care. 2010;38:259–65.CrossRefPubMedGoogle Scholar
  58. 58.
    Walsh SR, Walsh CJ. Intravenous fluid-associated morbidity in postoperative patients. Ann R Coll Surg Engl. 2005;87:126–30.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kalus JS, Caron MF, White CM, Mather JF, Gallagher R, Boden WE, et al. Impact on fluid balance on incidence of atrial fibrillation after cardiothoracic surgery. Am J Cardiol. 2004;94:1423–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Hübner M, Schäfer M, Demartines N, Müller S, Maurer K, Baulig W, et al. Impact of restrictive intravenous fluid replacement and combined epidural analgesia on perioperative volume balance and renal function within a fast track program. J Surg Res. 2012;173:68–74.CrossRefPubMedGoogle Scholar
  61. 61.
    Ettinger KS, Arce K, Lohse CM, et al. Higher Perioperative fluid administration is associated with increased rates of complications following head and neck microvascular recunstruction with fibular free flaps. Microsurgery. 2016;00:000–9.Google Scholar
  62. 62.
    Bjerregaard LS, Møller-Sørensen H, Hansen KL, Ravn J, Nielsson JC. Using clinical parameters to guide fluid therapy in high-risk thoracic surgery. A retrospective, obervational study. BMC Anesthesiol. 2015;15:91–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Elofson KA, Eiferman DS, Porter K, Murphy CV. Impact on late fluid balance on clinical outcomes in the critical ill surgical and trauma population. J Crit Care. 2015;30:1338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    • Jurt J, Hübner M, Pache B, Hahnloser D, Demartines N, Grass F. Respiratory complications after colorectal surgery: avoidable or fate? World J Surg. 2018;42:2708–14 Even though this is a retrospective study, it describes risk factors for adverse outcomes in an ERAS program. CrossRefPubMedGoogle Scholar
  65. 65.
    • Askild D, Segelman J, Gedda C, Hjern F, Pekkari K, Gustavsson UO. The impact of perioperative fluid therapy on short-term outcomes and 5-year survival among patients undergoing colorectal cancer surgery — a prospective cohort study within an ERAS protocol. Eur J Surg Oncol. 2017;43:1433–9 In a prospective cohort design, risk factors for adverse outcomes in an ERAS-protocol are described.CrossRefGoogle Scholar
  66. 66.
    Nielsson L, Wodlin NB, Kjølhede P. Risk factors for postoperative complications after fast-track abdominal hystereectomy. Aust N Z J Obst Gyn. 2012;52:113–20.CrossRefGoogle Scholar
  67. 67.
    Duke MD, Guirdy C, Guice J, et al. Restrictive fluid resuscitation in combination with damage control resuscitation: time for adaption. J Trauma Acute Care Surg. 2012;73(3):674–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Minambres E, Rodrigo E, Ballesteros MA, et al. Impact of restrictive fluid balance focused to increase lung procurement on renal function after kidney transplantation. Nephrol Dial Transplant. 2010;25:2352–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Weinberg L, Wong D, Karalapilli D, et al. The impact of fluid intervention on complications and length of hospital stay after pancreaticoduodenodenectomt (Whipple's procedure). BMC Anesthesiol. 2014;14:35–43.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Møller AM, Pedersen T, Svendsen P-E, Engquist A. Perioperative risk factors in elective pneumonectomy: the impact of excess fluid balance. Eur J Anaesthesiol. 2002;19:57–62.CrossRefPubMedGoogle Scholar
  71. 71.
    Parquin F, Marchal M, Mehiri S, Herve P, Lescot B. Post-pneumonektomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg. 1996;10:929–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Patel RL, Townsend ER, Fountain SW. Elective pneumonectomy: factors associated with morbidity and operative mortality. Ann Thorac Surg. 1992;54(84):88.Google Scholar
  73. 73.
    Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103(6):1646–50.CrossRefPubMedGoogle Scholar
  74. 74.
    Verheijen-Breemhaar L, Bogaard JM, van den Berg B, Hilvering C. Post-pneumonectomy pulmonary edema. Thorax. 1998;43(4):323–6.CrossRefGoogle Scholar
  75. 75.
    Zeldin RA, Normandin D, Landtwing D, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87(3):359–65.PubMedGoogle Scholar
  76. 76.
    Abraham-Nordling M, Hjern F, Pollack J, Prytz M, Borg T, Kressner U. Randomized clinical trial of fluid restriction in colorectal surgery. Br J Surg. 2012;99(2):186–91.CrossRefPubMedGoogle Scholar
  77. 77.
    Gao T, Li N, Zhang J, Xi FC, Chen QY, Zhu WM, et al. Restricted intravenous fluid regimen reduces the rate of postoperative complications and alters immunological activity of elderly patients operated for abdominal cancer: a randomized prospective clinical trial. World J Surg. 2012;36:993–1002.CrossRefPubMedGoogle Scholar
  78. 78.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Lobo SM, Lobo FR, Polachini CA, et al. Prospective, Randomized trial comparing fluids and doputamine optimization of oxygen delivery in high-risk surgical patients. Crit Care. 2006;10:R72.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intra-abdominal surgery. Anesthesiology. 2005;103(1):25–32.CrossRefPubMedGoogle Scholar
  81. 81.
    Wenkui Y, Ning L, Jianfeng G, Weiqin L, Shaoqiu T, Zhihui T, et al. Restricted peri-operative fluid administration adjusted by serum lactate level improved outcome after major elective surgery for gastrointestinal malignancy. Surgery. 2010;147(4):542–52.CrossRefPubMedGoogle Scholar
  82. 82.
    Wuethrich PY, Burchard FC, Thalmann GN, Stueber F, Studer UE. Restrictive deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy reduces postoperative complications and hospitalization time: a randomized clinical trial. Aneshsiology. 2014;120(2):365–77.CrossRefGoogle Scholar
  83. 83.
    National Heart and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid management strategies in acute lung injury. New Engl J Med. 2006;354:2564–75.CrossRefGoogle Scholar
  84. 84.
    Bhaskaran K, Arumugam G, Kumar PV. A prospective randomized comparison study on effect of perioperative use of chloride liberal intravenous fluids versus chloride restricted intravenous fluids on postoperative acute kidney injuri in patients undergoing off-pump coronary artery bypass grafting surgeries. Ann Card Anaesth. 2018;21:413–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    McArdle GT, McAuley DF, McKinley A, Blair P, Hoper M, Harkin DW. Preliminary results of a prospective randomized trial of restrictive versus standard fluid regime in elective open abdominal aortic aneurysm repair. Ann Surg. 2009;250(1):28–34.CrossRefPubMedGoogle Scholar
  86. 86.
    Lobo SM, Ronchi LS, Oliveira NE, Brandão PG, Froes A, Cunrath GS, et al. Restrictive strategy of intraoperative fluid maintenance during optimization of oxygen delivery decreases major complications after high-risk surgery. Crit Care. 2011;15(5):R226.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Stewart RM, Park PK, Hunt JP, et al. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg. 2009;208:725–37.CrossRefPubMedGoogle Scholar
  88. 88.
    Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69(4):488–98.CrossRefPubMedGoogle Scholar
  89. 89.
    •• Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. New Engl J Med. 2018;378(24):2263–74 The largest randomized trial of restricted versus liberal fluid therapy. The liberal regimen is not very liberal, but the restricted regimen is too restricted.CrossRefPubMedGoogle Scholar
  90. 90.
    • Brandstrup B. Finding the right balance. New Engl J Med. 2018;378(24):2335–6 Goes with the Myles et al. trial [89]. CrossRefPubMedGoogle Scholar
  91. 91.
    Nessim C, Sideris L, Turcotte S, et al. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res. 2013;183:567–73.CrossRefPubMedGoogle Scholar
  92. 92.
    Kulemann B, Timme S, Sifert G, et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomosis — a histomorphological analysis. Surgery. 2013;154(3):596–603.CrossRefPubMedGoogle Scholar
  93. 93.
    Marjanovic G, Villain C, Juettner E, et al. Impact of different crystalloid volume fluid regimens on intestinal anastomotic stability. Ann Surg. 2009;249(2):181–5.CrossRefPubMedGoogle Scholar
  94. 94.
    Gonzalez-Fajardo JA, Mengibar L, Brizuela JA, Castrodeza J, Vaquero-Puerta C. Effect of postoperative restrictive fluid therapy in the recovery of patients with abdominal vascular surgery. Eur J Vasc Endovasc Surg. 2009;37:538–43.CrossRefPubMedGoogle Scholar
  95. 95.
    MacCay G, Fearon K, McConnachie A, Serpell MG, Molloy RG, O'Dweyer PJ. Randomized clinical trial of the effect of postoperative intravenous fliod restriction on recovery after elective colorectal surgery. Br J Surg. 2006;93(12):1469–74.CrossRefGoogle Scholar
  96. 96.
    Vermeulen H, Hofland J, Legemate DA, Ubbink DT. Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial. Trials. 2009;7:10–50.Google Scholar
  97. 97.
    Boland MR, Noorani A, Varty K, Coffey C, Agha R, Walsh SR. Perioperative fluid restriction in major abdominal surgery: systematic review and meta-analysis of randomized clinical trials. World J Surg. 2013;37:1193–202.CrossRefPubMedGoogle Scholar
  98. 98.
    Brandstrup B, Svendsen PE, Rasmussen M, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near maximal stroke volume or zero fluid balance? A clinical randomized double blinded multi centre trial. Eur J Anaesth. 2010;27(suppl 47):4.CrossRefGoogle Scholar
  99. 99.
    •• Feldheiser A, Aziz O, Baldini G, et al. Enhanged recovery after surgery (ERAS) in gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anesthesiol Scand. 2016;60(3):289–334 Describes the state of the art perioperative care including the fluid therapy in an ERAS-program. CrossRefGoogle Scholar
  100. 100.
    Ljungqvist O, Scott M, Fearon KC. Enhanged recovery after surgery: a review. JAMA Surg. 2017;152(3):292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgeryHolbaek HospitalHolbaekDenmark
  2. 2.Institute for Clinical MedicineUniversity of CopenhagenKøbenhavn NDenmark
  3. 3.Department of AnaesthesiaHerlev University HospitalHerlevDenmark

Personalised recommendations