Advertisement

Current Anesthesiology Reports

, Volume 9, Issue 3, pp 223–233 | Cite as

Neurological Complications in Cardiac Surgery

  • Pascal A. Gerster
  • Anna Klesse
  • Julia Chang
  • Joachim M. Erb
  • Nicolai GoettelEmail author
Cardiovascular Anesthesia (J Fassl, Section Editor)
  • 68 Downloads
Part of the following topical collections:
  1. Cardiovascular Anesthesia

Abstract

Purpose of Review

Perioperative neurological complications have a significant impact on mortality, morbidity, and quality of life in a growing number of high-risk patients undergoing cardiac surgery. In this comprehensive review, we provide an outline of the current literature with regard to stroke, perioperative neurocognitive disorders (delirium and cognitive decline), postoperative visual loss, and peripheral nerve injury in cardiac surgery.

Recent Findings

Cardiac surgeons, anesthesiologists, and critical care specialists are facing a new population of cardiosurgical patients who are older and sicker than in previous decades. If neurological complications occur during or after cardiac surgery, they may be devastating. We give insights into the etiology, underlying pathophysiologic mechanisms, incidences, and risk factors of these complications. Current international guidelines and preventive strategies are also discussed.

Summary

Despite technological and surgical progress aimed to reduce neurological injury in the perioperative period, neurological complications remain prevalent in cardiosurgical patients. An increased awareness of this problem will encourage appropriate risk management, frequent neurological assessments, and prompt therapeutic interventions.

Keywords

Neurological complications Cardiac surgery Stroke Neurocognitive disorders Postoperative delirium Postoperative cognitive dysfunction Postoperative visual loss Peripheral nerve injury 

Notes

Acknowledgments

We thank Allison Dwileski, BSc, for proofreading the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Pascal A. Gerster, Anna Klesse, Julia Chang, Joachim M. Erb, and Nicolai Goettel declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Society for Cardiothoracic Surgery in Great Britain & Ireland. Blue book online. http://www.bluebook.scts.org/. Accessed 18 Jan 2019.
  2. 2.
    Office for National Statistics. Population estimates for the UK, England and Wales, Scotland and Northern Ireland: mid-2015. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2015. Accessed 18 Jan 2019.
  3. 3.
    National Institute for Cardiovascular Outcomes Research. National adult cardiac surgery audit, annual report 2010–2011. https://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/reports/annualreport2010-11. Accessed 18 Jan 2019.
  4. 4.
    Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter study of perioperative ischemia research group and the ischemia research and education foundation investigators. N Engl J Med. 1996;335(25):1857–63.  https://doi.org/10.1056/NEJM199612193352501.CrossRefPubMedGoogle Scholar
  5. 5.
    Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med. 2012;366(3):250–7.  https://doi.org/10.1056/NEJMra1100109.CrossRefPubMedGoogle Scholar
  6. 6.
    Tarakji KG, Sabik JF 3rd, Bhudia SK, Batizy LH, Blackstone EH. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA. 2011;305(4):381–90.  https://doi.org/10.1001/jama.2011.37.CrossRefPubMedGoogle Scholar
  7. 7.
    Engelman RM, Engelman DT. Strategies and devices to minimize stroke in adult cardiac surgery. Seminars in thoracic and cardiovascular surgery. 2015;27(1):24–9.  https://doi.org/10.1053/j.semtcvs.2015.03.001.CrossRefPubMedGoogle Scholar
  8. 8.
    Abah U, Large S. Stroke prevention in cardiac surgery. Interact Cardiovasc Thorac Surg. 2012;15(1):155–7.  https://doi.org/10.1093/icvts/ivs012.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patel N, Horsfield MA, Banahan C, Janus J, Masters K, Morlese J, et al. Impact of perioperative infarcts after cardiac surgery. Stroke. 2015;46(3):680–6.  https://doi.org/10.1161/strokeaha.114.007533.CrossRefPubMedGoogle Scholar
  10. 10.
    McDonagh DL, Berger M, Mathew JP, Graffagnino C, Milano CA, Newman MF. Neurological complications of cardiac surgery. Lancet Neurol. 2014;13(5):490–502.  https://doi.org/10.1016/S1474-4422(14)70004-3.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bucerius J, Gummert JF, Borger MA, Walther T, Doll N, Onnasch JF, et al. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75(2):472–8.CrossRefGoogle Scholar
  12. 12.
    •• Whitlock R, Healey JS, Connolly SJ, Wang J, Danter MR, Tu JV, et al. Predictors of early and late stroke following cardiac surgery. CMAJ. 2014;186(12):905–11.  https://doi.org/10.1503/cmaj.131214Large retrospective cohort study focusing on predictors for early and late stroke. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vlisides P, Mashour GA. Perioperative stroke. Can J Anaesth. 2016;63(2):193–204.  https://doi.org/10.1007/s12630-015-0494-9.CrossRefPubMedGoogle Scholar
  14. 14.
    Nah HW, Lee JW, Chung CH, Choo SJ, Kwon SU, Kim JS, et al. New brain infarcts on magnetic resonance imaging after coronary artery bypass graft surgery: lesion patterns, mechanism, and predictors. Ann Neurol. 2014;76(3):347–55.  https://doi.org/10.1002/ana.24238.CrossRefPubMedGoogle Scholar
  15. 15.
    Eagle KA, Guyton RA, Davidoff R, Edwards FH, Ewy GA, Gardner TJ, et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation. 2004;110(9):1168–76.  https://doi.org/10.1161/01.cir.0000138790.14877.7d.CrossRefPubMedGoogle Scholar
  16. 16.
    Li Y, Walicki D, Mathiesen C, Jenny D, Li Q, Isayev Y, et al. Strokes after cardiac surgery and relationship to carotid stenosis. Arch Neurol. 2009;66(9):1091–6.  https://doi.org/10.1001/archneurol.2009.114.CrossRefPubMedGoogle Scholar
  17. 17.
    • Imasaka K, Yasaka M, Tayama E, Tomita Y. Obstructive carotid and/or intracranial artery disease rarely affects the incidence of haemodynamic ischaemic stroke during cardiac surgery: a study on brain perfusion single-photon emission computed tomography with acetazolamide. Eur J Cardiothorac Surg. 2015;48(5):739–46.  https://doi.org/10.1093/ejcts/ezu502Investigation of the cerebral perfusion reserve in patients with carotid stenosis. CrossRefPubMedGoogle Scholar
  18. 18.
    Hollinger A, Siegemund M, Goettel N, Steiner LA. Postoperative delirium in cardiac surgery: an unavoidable menace? J Cardiothorac Vasc Anesth. 2015;29(6):1677–87.  https://doi.org/10.1053/j.jvca.2014.08.021.CrossRefPubMedGoogle Scholar
  19. 19.
    McGarvey ML, Cheung AT, Stecker MM. Neurologic complications of cardiac surgery. UpToDate. 2019. https://www.uptodate.com/contents/neurologic-complications-of-cardiac-surgery. Accessed 24 Jan 2019.
  20. 20.
    Arnan MK, Hsieh TC, Yeboah J, Bertoni AG, Burke GL, Bahrainwala Z, et al. Postoperative blood urea nitrogen is associated with stroke in cardiac surgical patients. Ann Thorac Surg. 2015;99(4):1314–20.  https://doi.org/10.1016/j.athoracsur.2014.11.034.CrossRefPubMedGoogle Scholar
  21. 21.
    Carrascal Y, Guerrero AL, Blanco M, Valenzuela H, Pareja P, Laguna G. Postoperative stroke related to cardiac surgery in octogenarians. Interact Cardiovasc Thorac Surg. 2014;18(5):596–601.  https://doi.org/10.1093/icvts/ivu022.CrossRefPubMedGoogle Scholar
  22. 22.
    LaPar DJ, Quader M, Rich JB, Kron IL, Crosby IK, Kern JA, et al. Institutional variation in mortality after stroke after cardiac surgery: an opportunity for improvement. Ann Thorac Surg. 2015;100(4):1276–82; discussion 82-3.  https://doi.org/10.1016/j.athoracsur.2015.04.038.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harrer M, Waldenberger FR, Weiss G, Folkmann S, Gorlitzer M, Moidl R, et al. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur J Cardiothorac Surg. 2010;38(5):561–7.  https://doi.org/10.1016/j.ejcts.2010.03.016.CrossRefPubMedGoogle Scholar
  24. 24.
    Spielvogel D, Tang GH. Selective cerebral perfusion for cerebral protection: what we do know. Ann Cardiothorac Surg. 2013;2(3):326–30.  https://doi.org/10.3978/j.issn.2225-319X.2013.03.02.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Serraino GF, Murphy GJ. Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised trials. BMJ Open. 2017;7(9):e016613.  https://doi.org/10.1136/bmjopen-2017-016613.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    •• Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1(1):CD010947.  https://doi.org/10.1002/14651858.CD010947.pub2Recent systematic review and meta-analysis of randomized controlled trials to assess the effects of perioperative cerebral NIRS monitoring on neurological outcomes. CrossRefPubMedGoogle Scholar
  27. 27.
    Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46(4):517–92.  https://doi.org/10.1093/ejcts/ezu366.CrossRefPubMedGoogle Scholar
  28. 28.
    Masabni K, Raza S, Blackstone EH, Gornik HL, Sabik JF 3rd. Does preoperative carotid stenosis screening reduce perioperative stroke in patients undergoing coronary artery bypass grafting? J Thorac Cardiovasc Surg. 2015;149(5):1253–60.  https://doi.org/10.1016/j.jtcvs.2015.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ashrafi M, Ball S, Ali A, Zeynali I, Perricone V. Carotid endarterectomy for critical stenosis prior to cardiac surgery: Should it be done? A retrospective cohort study. Int J Surg. 2016;26:53–7.  https://doi.org/10.1016/j.ijsu.2015.12.067.CrossRefPubMedGoogle Scholar
  30. 30.
    Castaldo JE, Yacoub HA, Li Y, Kincaid H, Jenny D. Open heart surgery does not increase the incidence of ipsilateral ischemic stroke in patients with asymptomatic severe carotid stenosis. J Stroke Cerebrovasc Dis. 2017;26(10):2154–9.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.037.CrossRefPubMedGoogle Scholar
  31. 31.
    Schultheis M, Saadat S, Dombrovskiy V, Frenchu K, Kanduri J, Romero J, et al. Carotid stenosis in cardiac surgery-no difference in postoperative outcomes. Thorac Cardiovasc Surg. 2018;66(3):255–60.  https://doi.org/10.1055/s-0036-1571851.CrossRefPubMedGoogle Scholar
  32. 32.
    Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2012;143(1):4–34.  https://doi.org/10.1016/j.jtcvs.2011.10.015.CrossRefPubMedGoogle Scholar
  33. 33.
    Ganguly G, Dixit V, Patrikar S, Venkatraman R, Gorthi SP, Tiwari N. Carbon dioxide insufflation and neurocognitive outcome of open heart surgery. Asian Cardiovasc Thorac Ann. 2015;23(7):774–80.  https://doi.org/10.1177/0218492315583562.CrossRefPubMedGoogle Scholar
  34. 34.
    Martens S, Neumann K, Sodemann C, Deschka H, Wimmer-Greinecker G, Moritz A. Carbon dioxide field flooding reduces neurologic impairment after open heart surgery. Ann Thorac Surg. 2008;85(2):543–7.  https://doi.org/10.1016/j.athoracsur.2007.08.047.CrossRefPubMedGoogle Scholar
  35. 35.
    Hammon JW. Brain protection during cardiac surgery: circa 2012. J Extra Corpor Technol. 2013;45(2):116–21.PubMedPubMedCentralGoogle Scholar
  36. 36.
    van den Goor JM, Nieuwland R, van Oeveren W, Rutten PM, Tijssen JG, Hau CM, et al. Cell saver device efficiently removes cell-derived microparticles during cardiac surgery. J Thorac Cardiovasc Surg. 2007;134(3):798–9.  https://doi.org/10.1016/j.jtcvs.2007.02.042.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang G, Bainbridge D, Martin J, Cheng D. The efficacy of an intraoperative cell saver during cardiac surgery: a meta-analysis of randomized trials. Anesth Analg. 2009;109(2):320–30.  https://doi.org/10.1213/ane.0b013e3181aa084c.CrossRefPubMedGoogle Scholar
  38. 38.
    Ho KM, Tan JA. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: a systematic review. Cardiovasc Ther. 2011;29(4):260–79.  https://doi.org/10.1111/j.1755-5922.2009.00114.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Lomivorotov VV, Shmirev VA, Efremov SM, Ponomarev DN, Moroz GB, Shahin DG, et al. Hypothermic versus normothermic cardiopulmonary bypass in patients with valvular heart disease. J Cardiothorac Vasc Anesth. 2014;28(2):295–300.  https://doi.org/10.1053/j.jvca.2013.03.009.CrossRefPubMedGoogle Scholar
  40. 40.
    Kayatta MO, Chen EP. Optimal temperature management in aortic arch operations. Gen Thorac Cardiovasc Surg. 2016;64(11):639–50.  https://doi.org/10.1007/s11748-016-0699-z.CrossRefPubMedGoogle Scholar
  41. 41.
    El-Sayed Ahmad A, Papadopoulos N, Risteski P, Moritz A, Zierer A. The standardized concept of moderate-to-mild (≥28 °C) systemic hypothermia during selective antegrade cerebral perfusion for all-comers in aortic arch surgery: single-center experience in 587 consecutive patients over a 15-year period. Ann Thorac Surg. 2017;104(1):49–55.  https://doi.org/10.1016/j.athoracsur.2016.10.024.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu Y, Xiao L, Yang T, Wang L, Chen X. Aortic arch reconstruction: deep and moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Perfusion. 2017;32(5):389–93.  https://doi.org/10.1177/0267659116688423.CrossRefPubMedGoogle Scholar
  43. 43.
    Tian DH, Wan B, Bannon PG, Misfeld M, LeMaire SA, Kazui T, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2(2):148–58.  https://doi.org/10.3978/j.issn.2225-319X.2013.03.13.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    El-Sayed Ahmad A, Papadopoulos N, Risteski P, Hack T, Ay M, Moritz A, et al. Is more than one hour of selective antegrade cerebral perfusion in moderate-to-mild systemic hypothermic circulatory arrest for surgery of acute type A aortic dissection safe? Thorac Cardiovasc Surg. 2018;66(3):215–21.  https://doi.org/10.1055/s-0037-1604451.CrossRefPubMedGoogle Scholar
  45. 45.
    El-Sayed Ahmad A, Risteski P, Ay M, Papadopoulos N, Moritz A, Zierer A. Moderate hypothermic circulatory arrest (≥28 °C) with selective antegrade cerebral perfusion for total arch replacement with frozen elephant trunk technique. Thorac Cardiovasc Surg. 2018.  https://doi.org/10.1055/s-0038-1639478.PubMedGoogle Scholar
  46. 46.
    •• Reents W, Zacher M, Boergermann J, Kappert U, Hilker M, Farber G, et al. Off-pump coronary artery bypass grafting and stroke-exploratory analysis of the GOPCABE trial and methodological considerations. Thorac Cardiovasc Surg. 2018;66(6):464–9.  https://doi.org/10.1055/s-0038-1636936Report of the GOPCAPE trial including an aggregate analysis of more than 10,000 patients from four recent randomized controlled trials comparing stroke rates for on- and off-pump CABG. CrossRefPubMedGoogle Scholar
  47. 47.
    Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269(6884):259–63.CrossRefGoogle Scholar
  48. 48.
    • Evered L, Silbert B, Knopman DS, Scott DA, ST DK, Rasmussen LS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Anesthesiology. 2018;129(5):872–9.  https://doi.org/10.1097/ALN.0000000000002334Recent recommendations by an interdisciplinary working group for the nomenclature of cognitive change associated with anesthesia and surgery. CrossRefPubMedGoogle Scholar
  49. 49.
    Steiner LA, Monsch R, Thomann A, Monsch AU, Goettel N. Transiente und permanente kognitive Defizite nach chirurgischen Operationen. Therapeutische Umschau. 2017;74(7):384–8.  https://doi.org/10.1024/0040-5930/a000930.CrossRefPubMedGoogle Scholar
  50. 50.
    Monsch RJ, Burckhardt AC, Berres M, Thomann AE, Ehrensperger MM, Steiner LA, et al. Development of a novel self-administered cognitive assessment tool and normative data for older adults. J Neurosurg Anesthesiol. 2018;31:218–26.  https://doi.org/10.1097/ANA.0000000000000510.CrossRefGoogle Scholar
  51. 51.
    Riedel B, Browne K, Silbert B. Cerebral protection: inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr Opin Anaesthesiol. 2014;27(1):89–97.  https://doi.org/10.1097/ACO.0000000000000032.CrossRefPubMedGoogle Scholar
  52. 52.
    Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106(3):436–43.CrossRefGoogle Scholar
  53. 53.
    Steinberg BM, Grossi EA, Schwartz DS, McLoughlin DE, Aguinaga M, Bizekis C, et al. Heparin bonding of bypass circuits reduces cytokine release during cardiopulmonary bypass. Ann Thorac Surg. 1995;60(3):525–9.CrossRefGoogle Scholar
  54. 54.
    Gu YJ, Mariani MA, Boonstra PW, Grandjean JG, van Oeveren W. Complement activation in coronary artery bypass grafting patients without cardiopulmonary bypass: the role of tissue injury by surgical incision. Chest. 1999;116(4):892–8.CrossRefGoogle Scholar
  55. 55.
    Liu J, Wang H, Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol. 2016;10:79–84.  https://doi.org/10.4137/CMC.S33164.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fairbairn TA, Mather AN, Bijsterveld P, Worthy G, Currie S, Goddard AJ, et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart. 2012;98(1):18–23.  https://doi.org/10.1136/heartjnl-2011-300065.CrossRefPubMedGoogle Scholar
  57. 57.
    Nadelson MR, Sanders RD, Avidan MS. Perioperative cognitive trajectory in adults. Br J Anaesth. 2014;112(3):440–51.  https://doi.org/10.1093/bja/aet420.CrossRefPubMedGoogle Scholar
  58. 58.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  59. 59.
    Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK, et al. Cognitive trajectories after postoperative delirium. N Engl J Med. 2012;367(1):30–9.  https://doi.org/10.1056/NEJMoa1112923.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Berger M, Terrando N, Smith SK, Browndyke JN, Newman MF, Mathew JP. Neurocognitive function after cardiac surgery: from phenotypes to mechanisms. Anesthesiology. 2018;129(4):829–51.  https://doi.org/10.1097/ALN.0000000000002194.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    •• American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults. Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. J Am Coll Surg. 2015;220(2):136-48 e1.  https://doi.org/10.1016/j.jamcollsurg.2014.10.019American Geriatric Society guideline on prevention and treatment of POD in older adults. CrossRefGoogle Scholar
  62. 62.
    •• National Institute for Health and Care Excellence. NCGC National Clinical Guideline Centre. Delirium: diagnosis, prevention and management. http://www.nice.org.uk/guidance/cg103/evidence/full-guideline-134653069. Accessed 18 January 2019. National Institute for Health and Care Excellence guideline on diagnosis, prevention, and management of delirium.
  63. 63.
    Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med. 1990;113(12):941–8.CrossRefGoogle Scholar
  64. 64.
    Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.CrossRefGoogle Scholar
  65. 65.
    Marcantonio ER, Ngo LH, O’Connor M, Jones RN, Crane PK, Metzger ED, et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study. Ann Intern Med. 2014;161(8):554–61.  https://doi.org/10.7326/M14-0865.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Goettel N, Steiner LA. Postoperatives delirium: Früherkennung, Prävention und Therapie. Schweiz Med Forum. 2013;13(26):522–6.  https://doi.org/10.4414/smf.2013.01540.CrossRefGoogle Scholar
  67. 67.
    Safavynia SA, Arora S, Pryor KO, Garcia PS. An update on postoperative delirium: clinical features, neuropathogenesis, and perioperative management. Curr Anesthesiol Rep. 2018;8(3):252–62.CrossRefGoogle Scholar
  68. 68.
    Cereghetti C, Siegemund M, Schaedelin S, Fassl J, Seeberger MD, Eckstein FS, et al. Independent predictors of the duration and overall burden of postoperative delirium after cardiac surgery in adults: an observational cohort study. J Cardiothorac Vasc Anesth. 2017;31(6):1966–73.  https://doi.org/10.1053/j.jvca.2017.03.042.CrossRefPubMedGoogle Scholar
  69. 69.
    Whitlock EL, Torres BA, Lin N, Helsten DL, Nadelson MR, Mashour GA, et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg. 2014;118(4):809–17.  https://doi.org/10.1213/ANE.0000000000000028.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wildes TS, Mickle AM, Ben Abdallah A, Maybrier HR, Oberhaus J, Budelier TP, et al. Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES randomized clinical trial. JAMA. 2019;321(5):473–83.  https://doi.org/10.1001/jama.2018.22005.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    •• Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Audisio R, Borozdina A, et al. European society of anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017;34(4):192–214 European Society of Anaesthesiology guideline on POD. CrossRefGoogle Scholar
  72. 72.
    Mashour GA, Woodrum DT, Avidan MS. Neurological complications of surgery and anaesthesia. Br J Anaesth. 2015;114(2):194–203.  https://doi.org/10.1093/bja/aeu296.CrossRefPubMedGoogle Scholar
  73. 73.
    Girard TD, Exline MC, Carson SS, Hough CL, Rock P, Gong MN, et al. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379(26):2506–16.  https://doi.org/10.1056/NEJMoa1808217.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Neufeld KJ, Yue J, Robinson TN, Inouye SK, Needham DM. Antipsychotic medication for prevention and treatment of delirium in hospitalized adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2016;64(4):705–14.  https://doi.org/10.1111/jgs.14076.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Inouye SK, Bogardus ST Jr, Charpentier PA, Leo-Summers L, Acampora D, Holford TR, et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med. 1999;340(9):669–76.  https://doi.org/10.1056/NEJM199903043400901.CrossRefPubMedGoogle Scholar
  76. 76.
    Marcantonio ER. Delirium in hospitalized older adults. N Engl J Med. 2017;377(15):1456–66.  https://doi.org/10.1056/NEJMcp1605501.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110(3):548–55.  https://doi.org/10.1097/ALN.0b013e318195b569.CrossRefPubMedGoogle Scholar
  78. 78.
    Evered LA, Silbert BS, Scott DA. Maruff P, Ames D. Prevalence of dementia 7.5 years after coronary artery bypass graft surgery. Anesthesiology. 2016;125(1):62–71.  https://doi.org/10.1097/ALN.0000000000001143.CrossRefPubMedGoogle Scholar
  79. 79.
    Lin Y, Chen J, Wang Z. Meta-analysis of factors which influence delirium following cardiac surgery. J Card Surg. 2012;27(4):481–92.  https://doi.org/10.1111/j.1540-8191.2012.01472.x.CrossRefPubMedGoogle Scholar
  80. 80.
    Ottens TH, Dieleman JM, Sauer AMC, Peelen LM, Nierich AP, de Groot WJ, et al. Effects of dexamethasone on cognitive decline after cardiac surgery a randomized clinical trial. Anesthesiology. 2014;121(3):492–500.CrossRefGoogle Scholar
  81. 81.
    Biousse V, Newman NJ. Ischemic optic neuropathies. N Engl J Med. 2015;372(25):2428–36.  https://doi.org/10.1056/NEJMra1413352.CrossRefPubMedGoogle Scholar
  82. 82.
    Biousse V, Nahab F, Newman NJ. Management of acute retinal ischemia: follow the guidelines! Ophthalmology. 2018;125(10):1597–607.  https://doi.org/10.1016/j.ophtha.2018.03.054.CrossRefPubMedGoogle Scholar
  83. 83.
    Miller NR, Arnold AC. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy. Eye (London, England). 2015;29(1):65–79.  https://doi.org/10.1038/eye.2014.144.CrossRefGoogle Scholar
  84. 84.
    Roth S. Perioperative visual loss: what do we know, what can we do? British journal of anaesthesia. 2009;103(Suppl 1):i31–40.  https://doi.org/10.1093/bja/aep295.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    •• Rubin DS, Matsumoto MM, Moss HE, Joslin CE, Tung A, Roth S. Ischemic optic neuropathy in cardiac surgery: incidence and risk factors in the United States from the national inpatient sample 1998 to 2013. Anesthesiology. 2017;126(5):810–21.  https://doi.org/10.1097/aln.0000000000001533Largest study to date on ION in cardiac surgery. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    •• Shen Y, Drum M, Roth S. The prevalence of perioperative visual loss in the United States: a 10-year study from 1996 to 2005 of spinal, orthopedic, cardiac, and general surgery. Anesth Analg. 2009;109(5):1534–45.  https://doi.org/10.1213/ane.0b013e3181b0500bLargest study to date comparing the prevalence of POVL amongst the eight most common non-ophthalmic surgeries. CrossRefPubMedGoogle Scholar
  87. 87.
    Scarpino M, Olivo G, Quilghini P, Lanzo G, Moretti M, Carrai R, et al. Cortical blindness after cardiac surgery: just an ischemic mechanism? J Cardiothorac Vasc Anesth. 2016;30(4):1053–6.  https://doi.org/10.1053/j.jvca.2015.09.006.CrossRefPubMedGoogle Scholar
  88. 88.
    Corda DM, Dexter F, Pasternak JJ, Trentman TL, Nottmeier EW, Brull SJ. Patients’ perspective on full disclosure and informed consent regarding postoperative visual loss associated with spinal surgery in the prone position. Mayo Clin Proc. 2011;86(9):865–8.  https://doi.org/10.4065/mcp.2011.0279.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Shapira OM, Kimmel WA, Lindsey PS, Shahian DM. Anterior ischemic optic neuropathy after open heart operations. Ann Thorac Surg. 1996;61(2):660–6.  https://doi.org/10.1016/0003-4975(95)01108-0.CrossRefPubMedGoogle Scholar
  90. 90.
    Nuttall GA, Garrity JA, Dearani JA, Abel MD, Schroeder DR, Mullany CJ. Risk factors for ischemic optic neuropathy after cardiopulmonary bypass: a matched case/control study. Anesth Analg. 2001;93(6):1410–6 table of contents.CrossRefGoogle Scholar
  91. 91.
    Kalyani SD, Miller NR, Dong LM, Baumgartner WA, Alejo DE, Gilbert TB. Incidence of and risk factors for perioperative optic neuropathy after cardiac surgery. Ann Thorac Surg. 2004;78(1):34–7.  https://doi.org/10.1016/j.athoracsur.2004.02.015.CrossRefPubMedGoogle Scholar
  92. 92.
    Roth S, Moss HE. Update on perioperative ischemic optic neuropathy associated with non-ophthalmic surgery. Front Neurol. 2018;9:557.  https://doi.org/10.3389/fneur.2018.00557.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    •• Calway T, Rubin DS, Moss HE, Joslin CE, Beckmann K, Roth S. Perioperative retinal artery occlusion: risk factors in cardiac surgery from the United States national inpatient sample 1998–2013. Ophthalmology. 2017;124(2):189–96.  https://doi.org/10.1016/j.ophtha.2016.10.025First and only study to specifically address RAO in cardiac surgery. CrossRefPubMedGoogle Scholar
  94. 94.
    Hayashi H, Kawaguchi M, Okamoto M, Hasuwa K, Matsuura T, Taniguchi S, et al. Asymptomatic and symptomatic postoperative visual dysfunction after cardiovascular surgery with cardiopulmonary bypass: a small-sized prospective observational study. J Cardiothorac Vasc Anesth. 2013;27(5):884–9.  https://doi.org/10.1053/j.jvca.2013.01.026.CrossRefPubMedGoogle Scholar
  95. 95.
    • Chui J, Murkin JM, Posner KL, Domino KB. Perioperative peripheral nerve injury after general anesthesia: a qualitative systematic review. Anesth Analg. 2018;127(1):134–43.  https://doi.org/10.1213/ane.0000000000003420Excellent systematic review with in-depth discussion on possible mechanisms of PNI and medico-legal implications. CrossRefPubMedGoogle Scholar
  96. 96.
    • Jellish WS, Oftadeh M. Peripheral nerve injury in cardiac surgery. J Cardiothorac Vasc Anesth. 2018;32(1):495–511.  https://doi.org/10.1053/j.jvca.2017.08.030Excellent review article with extensive description of PNI in cardiac surgery. CrossRefPubMedGoogle Scholar
  97. 97.
    Lederman RJ, Breuer AC, Hanson MR, Furlan AJ, Loop FD, Cosgrove DM, et al. Peripheral nervous system complications of coronary artery bypass graft surgery. Ann Neurol. 1982;12(3):297–301.  https://doi.org/10.1002/ana.410120315.CrossRefPubMedGoogle Scholar
  98. 98.
    • Gavazzi A, de Rino F, Boveri MC, Picozzi A, Franceschi M. Prevalence of peripheral nervous system complications after major heart surgery. Neurol Sci. 2016;37(2):205–9.  https://doi.org/10.1007/s10072-015-2390-zRecent prospective single-center study on the prevalence of PNI in cardiac surgery. CrossRefPubMedGoogle Scholar
  99. 99.
    Welch MB, Brummett CM, Welch TD, Tremper KK, Shanks AM, Guglani P, et al. Perioperative peripheral nerve injuries: a retrospective study of 380,680 cases during a 10-year period at a single institution. Anesthesiology. 2009;111(3):490–7.  https://doi.org/10.1097/ALN.0b013e3181af61cb.CrossRefPubMedGoogle Scholar
  100. 100.
    Staff NP, Engelstad J, Klein CJ, Amrami KK, Spinner RJ, Dyck PJ, et al. Post-surgical inflammatory neuropathy. Brain. 2010;133(10):2866–80.  https://doi.org/10.1093/brain/awq252.CrossRefPubMedGoogle Scholar
  101. 101.
    Alvine FG, Schurrer ME. Postoperative ulnar-nerve palsy. Are there predisposing factors? J Bone Joint Surg Am. 1987;69(2):255–9.CrossRefGoogle Scholar
  102. 102.
    Upton AR, McComas AJ. The double crush in nerve entrapment syndromes. Lancet. 1973;2(7825):359–62.CrossRefGoogle Scholar
  103. 103.
    Kirsh MM, Magee KR, Gago O, Kahn DR, Sloan H. Brachial plexus injury following median sternotomy incision. Ann Thorac Surg. 1971;11(4):315–9.CrossRefGoogle Scholar
  104. 104.
    Vander Salm TJ, Cereda JM, Cutler BS. Brachial plexus injury following median sternotomy. J Thorac Cardiovasc Surg. 1980;80(3):447–52.PubMedGoogle Scholar
  105. 105.
    Baisden CE, Greenwald LV, Symbas PN. Occult rib fractures and brachial plexus injury following median sternotomy for open-heart operations. Ann Thorac Surg. 1984;38(3):192–4.CrossRefGoogle Scholar
  106. 106.
    Seyfer AE, Grammer NY, Bogumill GP, Provost JM, Chandry U. Upper extremity neuropathies after cardiac surgery. J Hand Surg Am. 1985;10(1):16–9.CrossRefGoogle Scholar
  107. 107.
    Vahl CF, Carl I, Muller-Vahl H, Struck E. Brachial plexus injury after cardiac surgery. The role of internal mammary artery preparation: a prospective study on 1000 consecutive patients. J Thorac Cardiovasc Surg. 1991;102(5):724–9.PubMedGoogle Scholar
  108. 108.
    Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119(9):1951–65.  https://doi.org/10.1016/j.clinph.2008.03.018.CrossRefPubMedGoogle Scholar
  109. 109.
    Aguirre VJ, Sinha P, Zimmet A, Lee GA, Kwa L, Rosenfeldt F. Phrenic nerve injury during cardiac surgery: mechanisms, management and prevention. Heart Lung Circ. 2013;22(11):895–902.  https://doi.org/10.1016/j.hlc.2013.06.010.CrossRefPubMedGoogle Scholar
  110. 110.
    Cassese M, Martinelli G, Nasso G, Anselmi A, De Filippo CM, Braccio M, et al. Topical cooling for myocardial protection: the results of a prospective randomized study of the “shallow technique”. J Card Surg. 2006;21(4):357–62.  https://doi.org/10.1111/j.1540-8191.2006.00245.x.CrossRefPubMedGoogle Scholar
  111. 111.
    Dimopoulou I, Daganou M, Dafni U, Karakatsani A, Khoury M, Geroulanos S, et al. Phrenic nerve dysfunction after cardiac operations: electrophysiologic evaluation of risk factors. Chest. 1998;113(1):8–14.CrossRefGoogle Scholar
  112. 112.
    Cohen AJ, Katz MG, Katz R, Mayerfeld D, Hauptman E, Schachner A. Phrenic nerve injury after coronary artery grafting: is it always benign? Ann Thorac Surg. 1997;64(1):148–53.CrossRefGoogle Scholar
  113. 113.
    Katz MG, Katz R, Schachner A, Cohen AJ. Phrenic nerve injury after coronary artery bypass grafting: will it go away? Ann Thorac Surg. 1998;65(1):32–5.CrossRefGoogle Scholar
  114. 114.
    Hamdan AL, Moukarbel RV, Farhat F, Obeid M. Vocal cord paralysis after open-heart surgery. Eur J Cardiothorac Surg. 2002;21(4):671–4.CrossRefGoogle Scholar
  115. 115.
    Raut MS, Maheshwari A, Joshi R, Joshi R, Dubey S, Shivnani G, et al. Vocal cord paralysis after cardiac surgery and interventions: a review of possible etiologies. J Cardiothorac Vasc Anesth. 2016;30(6):1661–7.  https://doi.org/10.1053/j.jvca.2016.08.002.CrossRefPubMedGoogle Scholar
  116. 116.
    Itagaki T, Kikura M, Sato S. Incidence and risk factors of postoperative vocal cord paralysis in 987 patients after cardiovascular surgery. Ann Thorac Surg. 2007;83(6):2147–52.  https://doi.org/10.1016/j.athoracsur.2007.02.008.CrossRefPubMedGoogle Scholar
  117. 117.
    Hakim SM, Narouze SN. Risk factors for chronic saphenous neuralgia following coronary artery bypass graft surgery utilizing saphenous vein grafts. Pain Pract. 2015;15(8):720–9.  https://doi.org/10.1111/papr.12246.CrossRefPubMedGoogle Scholar
  118. 118.
    Mountney J, Wilkinson GA. Saphenous neuralgia after coronary artery bypass grafting. Eur J Cardiothorac Surg. 1999;16(4):440–3.CrossRefGoogle Scholar
  119. 119.
    Nair UR, Griffiths G, Lawson RA. Postoperative neuralgia in the leg after saphenous vein coronary artery bypass graft: a prospective study. Thorax. 1988;43(1):41–3.CrossRefGoogle Scholar
  120. 120.
    Cheng D, Allen K, Cohn W, Connolly M, Edgerton J, Falk V, et al. Endoscopic vascular harvest in coronary artery bypass grafting surgery: a meta-analysis of randomized trials and controlled trials. Innovations (Phila). 2005;1(2):61–74.  https://doi.org/10.1097/01.gim.0000196316.48694.41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pascal A. Gerster
    • 1
  • Anna Klesse
    • 1
  • Julia Chang
    • 1
  • Joachim M. Erb
    • 1
  • Nicolai Goettel
    • 1
    • 2
    Email author
  1. 1.Department of Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital BaselUniversity of BaselBaselSwitzerland
  2. 2.Department of Clinical ResearchUniversity of BaselBaselSwitzerland

Personalised recommendations