Current Pathobiology Reports

, Volume 5, Issue 1, pp 23–34 | Cite as

Insights from Global Analyses of Long Noncoding RNAs in Breast Cancer

  • Andrew J. Warburton
  • David N. BooneEmail author
RNA in Pathobiology (AW Duncan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on RNA in Pathobiology


Purpose of Review

The goal of this review was to compare and contrast the results and implications from several recent transcriptomic studies that analyzed the expression of long noncoding RNAs (lncRNAs) in breast cancer. How many lncRNAs are dysregulated in breast cancer? Do dysregulated lncRNAs contribute to breast cancer etiology? Are lncRNAs viable biomarkers in breast cancer?

Recent Findings

Transcriptomic profiling of breast cancer tissues, mostly from The Cancer Genome Atlas, identified thousands of long noncoding RNAs that are expressed and dysregulated in breast cancer. The expression of lncRNAs alone can divide patients into molecular subtypes. Subsequent functional studies demonstrated that several of these lncRNAs have important roles in breast cancer cell biology.


Thousands of lncRNAs are dysregulated in breast cancer that can be developed as biomarkers for prognostic or therapeutic purposes. The reviewed reports provide a roadmap to guide functional studies to discover lncRNAs with critical biological functions relating to breast cancer development and progression.


Long noncoding RNAs Breast cancer Biomarkers The Cancer Genome Atlas Transcriptomics 



Long noncoding RNA


Protein coding gene


Genome-wide association studies


RNA sequencing


The Cancer Genome Atlas


Estrogen receptor


Progesterone receptor


Triple-negative breast cancer


Single nucleotide polymorphism


Epithelial-mesenchymal transition



We acknowledge Sreeroopa Som for her comments during the planning of the manuscript. We also thank our funding sources. DB was supported in part by a Susan G. Komen Foundation Fellowship. AW was supported in part through the Computer Science, Biology, and Biomedical Informatics and the University of Pittsburgh Cancer Institute Academies, which are supported through grants from the Doris Duke Foundation-Clinical Research Experiences for High School Students at the University of Pittsburgh (grant no. 2014154), the National Cancer Institute CURE Program (3P30CA047904-27S2), and support from the Jack Kent Cook Foundation and donations from UPMC and grateful parents and patients. Additionally, we would like to thank the team from the Department of Biomedical Informatics National Library of Medicine Training Program Grant in Biomedical Informatics (T15 LM007059), the University of Pittsburgh Cancer Institute (UPCI) Cancer Center Support Grant for the Cancer Bioinformatics Service (P30 CA47904), and the Clinical and Translational Science Institute Biomedical Informatics Core (UL1 RR024153).

Compliance with Ethical Standards

Conflict of Interest

Andrew Warburton and David Boone declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Recently published papers of particular interest have been highlighted as: • Of importance

  1. 1.
    American Cancer Society. Cancer facts and figures. 2016; 2016Google Scholar
  2. 2.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  5. 5.
    Bernard PS, Parker JS, Mullins M et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nielsen TO, Leung S et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16:5222–5232PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463PubMedCrossRefGoogle Scholar
  8. 8.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361PubMedCrossRefGoogle Scholar
  9. 9.
    Wang KC, Chang HY (2012) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914CrossRefGoogle Scholar
  10. 10.
    Hansji H, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME (2014) Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet 5:1–15CrossRefGoogle Scholar
  11. 11.
    Cerk S, Schwarzenbacher D, Adiprasito J, Stotz M, Hutterer G, Gerger A, Ling H, Calin G, Pichler M (2016) Current status of long non-coding RNAs in human breast cancer. Int J Mol Sci 17:1485PubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526PubMedCrossRefGoogle Scholar
  14. 14.
    Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542PubMedCrossRefGoogle Scholar
  15. 15.
    Shore AN, Herschkowitz JI, Rosen JM (2012) Noncoding RNAs involved in mammary gland development and tumorigenesis: there’s a long way to go. J Mammary Gland Biol Neoplasia 17:43–58PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ (1999) Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 18:4460–4473PubMedCrossRefGoogle Scholar
  17. 17.
    Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS, Penn LZ (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66:5330–5337PubMedCrossRefGoogle Scholar
  18. 18.
    Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, Weedon J, Diallo R, Böcker W, Tiedge H (2004) BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 25:2125–2133PubMedCrossRefGoogle Scholar
  19. 19.
    Doyle LA, Yang W, Rishi AK, Gao Y, Ross DD (1996) H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein. Cancer Res 56:2904–2907PubMedGoogle Scholar
  20. 20.
    Lee JT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12:815–826PubMedCrossRefGoogle Scholar
  21. 21.
    Brockdorff N (2011) Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development 138:5057–5065PubMedCrossRefGoogle Scholar
  22. 22.
    Huang YS, Chang CC, Lee SS, Jou YS, Shih HM (2016) Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget. doi: 10.18632/oncotarget.9673 Google Scholar
  23. 23.
    Galupa R, Heard E (2015) X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev 31:57–66PubMedCrossRefGoogle Scholar
  24. 24.
    Berteaux N, Aptel N, Cathala G et al (2008) A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol 28:6731–6745PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, Chassat T, Bourette RP, Le Bourhis X, Adriaenssens E (2015) H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 6:29209–29223PubMedPubMedCentralGoogle Scholar
  26. 26.
    Vennin C, Spruyt N, Robin Y-M, Chassat T, Le Bourhis X, Adriaenssens E (2016) The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. doi: 10.1016/j.canlet.2016.10.023 PubMedGoogle Scholar
  27. 27.
    Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27PubMedCrossRefGoogle Scholar
  28. 28.
    Liu C, Wu HT, Zhu N, Shi YN, Liu Z, Ao BX, Liao DF, Zheng XL, Qin L (2016) Steroid receptor RNA activator: biologic function and role in disease. Clin Chim Acta 459:137–146PubMedCrossRefGoogle Scholar
  29. 29.
    Foulds CE, Tsimelzon A, Long W, Le A, Tsai SY, Tsai M-J, O’Malley BW (2010) Research resource: expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol Endocrinol 24:1090–1105PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vicent GP, Nacht AS, Zaurin R, Font-Mateu J, Soronellas D, Le Dily F, Reyes D, Beato M (2013) Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes. Genes Dev 27:1179–1197PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cavarretta ITR, Mukopadhyay R, Lonard DM, Cowsert LM, Bennett CF, O’Malley BW, Smith CL (2002) Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERalpha transcriptional activity and MCF-7 proliferation. Mol Endocrinol 16:253–270PubMedGoogle Scholar
  32. 32.
    Lanz RB, Chua SS, Barron N, Söder BM, DeMayo F, O’Malley BW (2003) Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol 23:7163–7176PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Oh TG, Wang SCM, Acharya BR, Goode JM, Graham JD, Clarke CL, Yap AS, Muscat GEO (2016) The nuclear receptor, RORγ, regulates pathways necessary for breast cancer metastasis. EBioMedicine 6:59–72PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sun C-C, Li S-J, Li G, Rui-Xi Hua X-HZ, Li DJ (2016) Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Acids 5:e385CrossRefGoogle Scholar
  35. 35.
    Choudhry H, Albukhari A, Morotti M et al (2015) Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34:4482–4490PubMedCrossRefGoogle Scholar
  36. 36.
    Sunwoo H, Dinger ME, Wilusz JE (2009) MEN ε/β nuclear retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 3:347–359Google Scholar
  37. 37.
    Naganuma T, Hirose T (2013) Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol 10:456–461PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI (2011) LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 8:496–505PubMedCrossRefGoogle Scholar
  39. 39.
    Meseure D, Vacher S, Lallemand F et al (2016) Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br J Cancer 114:1–10CrossRefGoogle Scholar
  40. 40.
    Jadaliha M, Zong X, Malakar P et al (2016) Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget. doi: 10.18632/oncotarget.9622 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chou J, Wang B, Zheng T, Li X, Zheng L, Hu J, Zhang Y, Xing Y, Xi T (2016) MALAT1 induced migration and invasion of human breast cancer cells by competitively binding MIR-1 with cdc42. Biochem Biophys Res Commun 472:262–269PubMedCrossRefGoogle Scholar
  42. 42.
    Huang N-S, Chi Y, Xue J, Liu M, Huang S, Mo M, Zhou S, Wu J (2016) Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget 7:37957–37965PubMedPubMedCentralGoogle Scholar
  43. 43.
    Arun G, Diermeier S, Akerman M et al (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34–51PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mendell JT (2016) Targeting a long noncoding RNA in breast cancer. doi: 10.1056/NEJMcibr1603785
  45. 45.
    Xue X, Yang YA, Zhang A, Fong K-W, Kim J, Song B, Li S, Zhao JC, Yu J (2015) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35:2746–2755PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Henry WS, Hendrickson DG, Beca F, et al. LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. 2016 1:Google Scholar
  47. 47.
    Eades G, Wolfson B, Zhang Y, Li Q, Yao Y, Zhou Q (2015) lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol Cancer Res 13:330–338PubMedCrossRefGoogle Scholar
  48. 48.
    Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B, Lu J (2014) LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 5:e1287PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Xia J, Li Q, Yao Y, Eades G, Gernapudi R, Duru N, Kensler TW, Zhou Q (2014) NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem 289:31310–31318PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mourtada-Maarabouni M, Pickard M, Hedge V, Farzaneh F, Williams G (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28373:195–208CrossRefGoogle Scholar
  51. 51.
    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pickard MR, Williams GT (2016) The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells. Oncotarget 7:10104–10116PubMedPubMedCentralGoogle Scholar
  53. 53.
    Pickard MR, Williams GT (2014) Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 145:359–370PubMedCrossRefGoogle Scholar
  54. 54.
    Askarian-Amiri ME, Crawford J, French JD et al (2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17:878–891PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hansji H, Leung EY, Baguley BC, Finlay GJ, Cameron-Smith D, Figueiredo VC, Askarian-Amiri ME (2016) ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biol Direct 11:62PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246PubMedCrossRefGoogle Scholar
  57. 57.
    Harrow J, Frankish A, Gonzalez JM et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22:1760–1774PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    • Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208. This was a key study that used ab initio assembly to charachterize 58,648 lncRNAs.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  61. 61.
    Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Koboldt DC, Fulton RS, McLellan MD et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefGoogle Scholar
  63. 63.
    Ciriello G, Gatza ML, Beck AH et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cerami E, Gao J, Dogrusoz U et al (2012) The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404PubMedCrossRefGoogle Scholar
  65. 65.
    Liu H, Li J, Koirala P, Ding X, Chen B, Wang Y, Wang Z, Wang C, Xu Z, Mo Y-Y (2016) Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget. doi: 10.18632/oncotarget.7828 Google Scholar
  66. 66.
    American Cancer Society (2015) Cancer facts & figures 2015. Am. Cancer Soc., AtlantaGoogle Scholar
  67. 67.
    Su X, Malouf GG, Chen Y et al (2014) Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget 5:9864–9876PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hillier LW, Marth GT, Quinlan AR et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188PubMedCrossRefGoogle Scholar
  69. 69.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28:495–501PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    • Yan X, Hu Z, Feng Y et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28:529–540. This study provided a comprehensive portrait of lncRNAs across cancers. They describe lncRNAs altered in cancers at transcriptional, genomic, and epigenetic levels. PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Steijger T, Abril JF, Engström PG et al (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184PubMedCrossRefGoogle Scholar
  75. 75.
    Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53PubMedCrossRefGoogle Scholar
  76. 76.
    Stacey SN, Manolescu A, Sulem P et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869PubMedCrossRefGoogle Scholar
  77. 77.
    Li J, Humphreys K, Heikkinen T et al (2011) A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat 126:717–727PubMedCrossRefGoogle Scholar
  78. 78.
    Turnbull C, Ahmed S, Morrison J et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Michailidou K, Hall P, Gonzalez-Neira A et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353–361PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thomas G, Jacobs KB, Kraft P et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41:579–584PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Niknafs YS, Han S, Ma T, Speers C, Zhang C, Wilder-Romans K, Iyer MK, Pitchiaya S, Malik R, Hosono Y, Prensner JR, Poliakov A, Singhal U, Xiao L, Kregel S, Siebenaler RF, Zhao SG, Uhl M, Gawronski A, Hayes DF, Pierce LJ, Cao X, Collins C, Backofen R, Sahi FF (2016) The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun 7:12791PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Miano V, Ferrero G, Reineri S, Caizzi L, Annaratone L, Ricci L, Cutrupi S, Castellano I, Cordero F, De Bortoli M (2016) Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer. Oncotarget 7:3201–3216PubMedGoogle Scholar
  83. 83.
    Bradford JR, Cox A, PCN B (2016) Consensus analysis of whole transcriptome profiles from two breast cancer patient cohorts reveals long non-coding RNAs associated with intrinsic subtype and the tumour microenvironment. PLoS One 11:e0163238PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barretina J, Caponigro G, Stransky N et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Van Grembergen O, Bizet M, de Bony EJ, Calonne E, Putmans P, Brohée S, Olsen C, Guo M, Bontempi G, Sotiriou C, Defrance M, François F (2016) Portraying breast cancers with long noncoding RNAs. Sci Adv 2:e1600220PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P (2013) LNCipedia: a database for annotated human IncRNA transcript sequences and structures. Nucleic Acids Res. doi: 10.1093/nar/gks915 PubMedGoogle Scholar
  88. 88.
    Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu K Da, Shao ZM (2016) Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res 76:2105–2114Google Scholar
  89. 89.
    Sørensen KP, Thomassen M, Tan Q, Bak M, Cold S, Burton M, Larsen MJ, Kruse TA (2015) Long non-coding RNA expression profiles predict metastasis in lymph node-negative breast cancer independently of traditional prognostic markers. Breast Cancer Res 17:55PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    • Sun M, Gadad SS, Kim DS, Kraus WL (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59:698–711. This study integrated steady-state RNAseq with GROSeq to define novel lncRNAs in MCF7 cells. PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sas-Chen A, Aure MR, Leibovich L et al (2016) LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol Med 39:e201606198Google Scholar
  92. 92.
    Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145:622–634PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sas-chen A, Aure MR, Leibovich L, et al. LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer. 2016 1–13Google Scholar
  94. 94.
    Yang F, Lyu S, Dong S, Liu Y, Zhang X, Wang O (2016) Expression profile analysis of long noncoding RNA in HER-2-enriched subtype breast cancer by next-generation sequencing and bioinformatics. Onco Targets Ther 9:761–772PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108:2419–2425PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Van Poppel H, Haese A, Graefen M, De La Taille A, Irani J, De Reijke T, Remzi M, Marberger M (2012) The relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance. BJU Int 109:360–366PubMedCrossRefGoogle Scholar
  97. 97.
    Zhu S, Li W, Liu J et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 34:1279–1286PubMedCrossRefGoogle Scholar
  98. 98.
    Sauvageau M, Goff LA, Lodato S et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. doi: 10.7554/eLife.01749 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lu Z, Zhang QC, Lee B et al (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–1279PubMedCrossRefGoogle Scholar
  101. 101.
    Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20PubMedCrossRefGoogle Scholar
  102. 102.
    Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Juan V, Crain C, Wilson C (2000) Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res 28:1221–1227PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays 32:473–480PubMedCrossRefGoogle Scholar
  105. 105.
    Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J, Hondermarck H, Curgy JJ, Dugimont T, Adriaenssens E (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280:29625–29636PubMedCrossRefGoogle Scholar
  106. 106.
    Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li TL, Cai JQ, Zhou HH, Zhu YS (2015) H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep 33:3045–3052PubMedGoogle Scholar
  107. 107.
    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23:1885–1895PubMedCrossRefGoogle Scholar
  108. 108.
    Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, Lagrou C, Stéhelin D, Coll J, Curgy JJ (1998) The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene 16:2395–2401PubMedCrossRefGoogle Scholar
  109. 109.
    Kino M, Hur DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA Gas5 is a growth arrest and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. doi: 10.1126/scisignal.2000568.Noncoding PubMedPubMedCentralGoogle Scholar
  110. 110.
    Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:1–10CrossRefGoogle Scholar
  112. 112.
    Yang X, Luo E, Liu X, Han B, Yu X, Peng X Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/ HOTAIR signaling pathway. 2016. doi:  10.1186/s12885-016-2465-0
  113. 113.
    Hajjari M, Salavaty A (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12:1–9PubMedPubMedCentralGoogle Scholar
  114. 114.
    Jiang M, Huang O, Xie Z, Wu S, Zhang X, Shen A, Hu S, Geng M, Shen K (2014) A novel long non-coding RNA-ARA: adriamycin resistance associated. Biochem Pharmacol 87:254–283PubMedCrossRefGoogle Scholar
  115. 115.
    Singh R, Gupta SC, Peng W-X, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z, Mo Y-Y (2016) Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis 7:e2262PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Askarian-amiri ME, Seyfoddin V, Smart CE, Wang J, Kim JE, Hansji H (2014) Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. Plos One 9:1–10CrossRefGoogle Scholar
  117. 117.
    Gumireddy K, Li A, Yan J, et al. Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. 2013 32:2672–2684Google Scholar
  118. 118.
    Xu C, Yang M, Ren Y, Wu C, Wang L. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. 2016 4362–4368Google Scholar
  119. 119.
    Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo Y-Y (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 5:1008CrossRefGoogle Scholar
  120. 120.
    Liu B, Sun L, Liu Q et al (2015) A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27:370–381PubMedCrossRefGoogle Scholar
  121. 121.
    Shi S-J, Wang L-J, Yu B, Li Y-H, Jin Y, Bai X-Z (2015) LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 6:11652–11663PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Xing Z, Park PK, Lin C, Yang L (2015) LncRNA BCAR4 wires up signaling transduction in breast cancer. RNA Biol 12:681–689PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Godinho M, Meijer D, Setyono-Han B, Dorssers LCJ, Van Agthoven T (2011) Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol 226:1741–1749PubMedCrossRefGoogle Scholar
  124. 124.
    Chen F, Mo J, Zhang L Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumor Biol. doi: 10.1007/s13277-016-5256-y
  125. 125.
    Godinho MFE, Sieuwerts AM, Look MP, Meijer D, Foekens JA, Dorssers LCJ, van Agthoven T (2010) Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br J Cancer 103:1284–1291PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Richards EJ, Zhang G, Li ZP et al (2015) Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem 290:6857–6867PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Grembergen O Van, Bizet M, De Bony EJ, et al. Portraying breast cancers with long noncoding RNAs. 2016 1–16Google Scholar
  128. 128.
    Lin A, Li C, Xing Z et al (2016) The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol 18:1–12CrossRefGoogle Scholar
  129. 129.
    Tian D, Sun S, Lee JT (2011) The long noncoding RNA, Jpx, is a molecular switch for X-chromosome inactivation. Cell 143:390–403CrossRefGoogle Scholar
  130. 130.
    Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Computer Science, Biology and Biomedical Informatics, University of Pittsburgh Cancer Institute AcademiesUniversity of PittsburghPittsburghUSA
  2. 2.Chemistry DepartmentUniversity of PittsburghPittsburghUSA
  3. 3.Department of Biomedical InformaticsUniversity of PittsburghPittsburghUSA

Personalised recommendations