Skip to main content
Log in

Haemodynamic Assessment in Cardiogenic Shock

  • Cardiovascular Care (L Roever, Section Editor)
  • Published:
Current Emergency and Hospital Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will discuss the practical applications based on the physiology that underpins some of these commonly used haemodynamic parameters.

Recent Findings

Haemodynamic parameters are integral to the management of cardiogenic shock. Some of these are easily measured and ubiquitous, such as arterial blood pressure and central venous pressure. Others, such as the use of pulmonary artery catheters, continue to be discussed and debated.

Summary

The management of cardiogenic shock is challenging. Clinicians employ a range of haemodynamic parameters to diagnose and guide therapeutic interventions in cardiogenic shock. Understanding the physiologic basis for these parameters will aid the interpretation and clinical application in cardiogenic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37:2129–200.

    PubMed  Google Scholar 

  2. Kato R, Pinsky MR. Personalizing blood pressure management in septic shock. Ann Intensive Care. 2015;5:41–50.

    PubMed  PubMed Central  Google Scholar 

  3. Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1981;49:980–7.

    Google Scholar 

  4. • Maas JJ, de Wilde RB, Aarts LP, Pinsky MR, Jansen JR. Determination of vascular waterfall phenomenon by bedside measurement of mean systemic lling pressure and critical closing pressure in the intensive care unit. Anesth Analg. 2012;114:803–10. This study demonstrates the vascular waterfall in human physiology.

    PubMed  PubMed Central  Google Scholar 

  5. Klima UP, Guerrero JL, Vlahakes GJ. Myocardial perfusion and right ventricular function. Ann Thorac Cardiovasc Surg. 1999;5:74–80.

    CAS  PubMed  Google Scholar 

  6. Gelman S, Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100:434–9.

    PubMed  Google Scholar 

  7. Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41:143–50.

    CAS  PubMed  Google Scholar 

  8. Magder S, Veerassamy S, Bates JHT. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol. 2009;106:81–90.

    CAS  PubMed  Google Scholar 

  9. Thiele RH, Nemergut EC, Lynch C III. The physiologic implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113:284–96.

    CAS  PubMed  Google Scholar 

  10. Den Uil CA, Lagrand WK, van der Ent M, et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31:3032–9.

    Google Scholar 

  11. Lim HS. Cardiogenic shock: failure of oxygen delivery and utilization. Clin Cardiol. 2016;39:477–83.

    PubMed  PubMed Central  Google Scholar 

  12. • Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task Force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815. A key consensus paper that details the hemodynamic minotoring in circulatory shock.

    PubMed  PubMed Central  Google Scholar 

  13. Magder S. Right atrial pressure in the critically ill. How to measure, what is the value, what are the limitations? Chest. 2017;151:908–16.

    PubMed  Google Scholar 

  14. Lodato RF. Use of the pulmonary artery catheter. Semin Respir Crit Care Med. 1999;20:29–42.

    Google Scholar 

  15. Magder S. Central venous pressure monitoring. Curr Opin Crit Care. 2006;12:219–27.

    PubMed  Google Scholar 

  16. Guyton AC, Abernathy B, Langston JB, Kaufmann BN, Fairchild HM. Relative importance of venous return and arterial resistances in cotrolling venous return and cardiac output. Am J Phys. 1959;196:1008–14.

    CAS  Google Scholar 

  17. Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22:44–51.

    PubMed  Google Scholar 

  18. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    PubMed  Google Scholar 

  19. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest. 2002;121:2000–8.

    PubMed  Google Scholar 

  20. Magder S, Erice F, Lagonidis D. Determinants of the ‘y’ descent and its use- fulness as a predictor of ventricular filling. J Intensive Care Med. 2000;15:262–9.

    Google Scholar 

  21. Shah MR, Hasselbald V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70.

    CAS  PubMed  Google Scholar 

  22. Murphy GS, Vender JS. Con: is the pulmonary artery catheter dead? J Cardiothorac Vasc Anesth. 2007;21:147–9.

    PubMed  Google Scholar 

  23. Mackenzie JD, Haites NA, Rawles JM. Method of assessing the reproducibility of blood flow measurement: factors influencing the performance of thermo-dilution cardiac output computers. Br Heart J. 1986;55:14–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanmarco ME, Philips CM, Marquez LA, Hall C, Davila JC. Measurement of cardiac output by thermal dilution. Am J Cardiol. 1971;28:54–8.

    CAS  PubMed  Google Scholar 

  25. Stctz WC, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method of determining cardiac output in clinical practice. Am Rev Respir Dis. 1982;26:1001–4.

    Google Scholar 

  26. Chiolero R, Flatt JP, Revelly JP, Jequier E. Effects of catecholamines on oxygen consumption and oxygen delivery in critically ill patients. Chest. 1991;100:1676–84.

    CAS  PubMed  Google Scholar 

  27. Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.

    CAS  PubMed  Google Scholar 

  28. Teboul JL, Graini L, Boujdaria R, Berton C, Richard C. Cardiac index versus oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest. 1993;103:81–5.

    CAS  PubMed  Google Scholar 

  29. Fares WH, Blanchard SK, Stouffer GA, Chang PP, Rosamond WD, Ford HJ, et al. Thermodilution and Fick cardiac outputs differ: impact on pulmonary hypertension evaluation. Can Respir J. 2012;19:261–6.

    PubMed  PubMed Central  Google Scholar 

  30. Meital V, Izak G, Rachmilewitz M. Changes in iron mobilization and utilization induced by acute haemorrhage. Br J Haematol. 1966;12:598–610.

    CAS  PubMed  Google Scholar 

  31. Gleiter CH, Freudenthaler S, Delabar U, Eckardt KU, Muhlbauer B, Gundert-Remy U, et al. Erythropoietin production in healthy volunteers subjected to controlled haemorrhage: evidence against a major role for adenosine. Br J Clin Pharmacol. 1996;42:729–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gleiter CH, Becker T, Schreeb KH, Freudenthaler S, Gundert-Remy U. Fenoterol but not dobutamine increases erythropoietin production in humans. Clin Pharmacol Ther. 1997;61:669–76.

    CAS  PubMed  Google Scholar 

  33. Nelson DP, King CE, Dodd SL, Schumacker PT, Cain SM. Systemic and intestinal limits of O2 extraction in the dog. J Appl Physiol. 1987;63:387–94.

    CAS  PubMed  Google Scholar 

  34. Samsel RW, Nelson DP, Sanders WM, Wood LD, Schumacker PT. Effect of endotoxin on systemic and skeletal muscle O2 extraction. J Appl Physiol. 1988;65:1377–82.

    CAS  PubMed  Google Scholar 

  35. Bredle DL, Samsel RW, Schumacker PT, Cain SM. Critical O2 delivery to skeletal muscle at high and low Po2 in endotoxemic dogs. J Appl Physiol. 1989;66:2553–8.

    CAS  PubMed  Google Scholar 

  36. Nelson DP, Samsel RW, Wood LD, Schumacker PT. Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol. 1988;64:2410–9.

    CAS  PubMed  Google Scholar 

  37. Walley KR, Becker CJ, Hogan RA, Teplinsky K, Wood LD. Progressive hypoxemia limits left ventricular oxygen consumption and contractility. Circ Res. 1988;63:849–59.

    CAS  PubMed  Google Scholar 

  38. Weyne J, De Ley G, Demeester G, Vandecasteele C, Vermeulen FL, Donche H, et al. Pet studies of changes in cerebral blood flow and oxygen metabolism after unilateral microembolization of the brain in anesthetized dogs. Stroke. 1987;18:128–37.

    CAS  PubMed  Google Scholar 

  39. Walley KR. Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol. 1996;81:885–94.

    CAS  PubMed  Google Scholar 

  40. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.

    PubMed  Google Scholar 

  41. Protti A, Singer M. Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care. 2006;10:228.

    PubMed  PubMed Central  Google Scholar 

  42. Nakazawa K, Hikawa Y, Saitoh Y, Tanaka N, Yasuda K, Amaha K. Usefulness of central venous oxygen saturation monitoring during cardiopulmonary resuscitation. A comparative case study with end-tidal carbon dioxide monitoring. Intensive Care Med. 1994;20:450–1.

    CAS  PubMed  Google Scholar 

  43. Rivers EP, Martin GB, Smithline H, Rady MY, Schultz CH, Goetting MG, et al. The clinical implications of contin- uous central venous oxygen saturation during human CPR. Ann Emerg Med. 1992;21:1094–101.

    CAS  PubMed  Google Scholar 

  44. Rivers EP, Rady MY, Martin GB, Fenn NM, Smithline HA, Alexander ME, et al. Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization. Chest. 1992;102:1787–93.

    CAS  PubMed  Google Scholar 

  45. Muir AL, Kirby BJ, King AJ, Miller HC. Mixed venous oxygen saturation in relation to cardiac output in myocardial infarction. BMJ. 1970;4:276–8.

    CAS  PubMed  Google Scholar 

  46. Dahn M, Lange M, Jacobs L. Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med. 1988;14:373–8.

    CAS  PubMed  Google Scholar 

  47. Barratt-Boyes B, Wood E. The oxygen saturation of blood in the venae cavae, right-heart chambers and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50:93–106.

    CAS  PubMed  Google Scholar 

  48. Glamann D, Lange R, Hillis L. Incidence and significance of a “step-down” in oxygen saturation from superior vena cava to pulmonary artery. Am J Cardiol. 1991;68:695–7.

    CAS  PubMed  Google Scholar 

  49. Vesely TM. Central venous catheter tip position: a continuing controversy. J Vasc Interv Radiol. 2003;14:527–34.

    PubMed  Google Scholar 

  50. Reinhart K, Kersting T, Fohring U, et al. Can central-venous replace mixed- venous oxygen saturation measurements during anesthesia? Adv Exp Med Biol. 1986;200:67–72.

    CAS  PubMed  Google Scholar 

  51. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L. Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med. 1997;25:399–404.

    CAS  PubMed  Google Scholar 

  52. Chawla L, Zia H, Gutierrez G, Katz N, Seneff M, Shah M. Lack of equiva- lence between central and mixed venous oxygen saturation. Chest. 2004;126:1891–6.

    PubMed  Google Scholar 

  53. Ho K, Harding R, Chamberlain J, Bulsara M. A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010;24:434–9.

    PubMed  Google Scholar 

  54. Varpula M, Karlsson S, Ruokonen E. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006;32:1336–43.

    PubMed  Google Scholar 

  55. Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 1969;40:165–70.

    CAS  PubMed  Google Scholar 

  56. Lee J, Wright F, Barber R, Stanley L. Central venous oxygen saturation in shock: a study in man. Anesthesiology. 1972;36:472–8.

    CAS  PubMed  Google Scholar 

  57. Tahvanainen J, Meretoja O, Nikki P. Can central venous blood replace mixed venous blood samples? Crit Care Med. 1982;10:758–61.

    CAS  PubMed  Google Scholar 

  58. Ladakis C, Myrianthefs P, Karabinis A, Karatzas G, Dosios T, Fildissis G, et al. Central venous and mixed venous oxygen saturation in critically ill patients. Respiration. 2001;68:279–85.

    CAS  PubMed  Google Scholar 

  59. Goldman RH, Braniff B, Harrison DC, et al. The use of central venous oxygen saturation measurements in a coronary care unit. Ann Intern Med. 1968;68:1280–7.

    CAS  PubMed  Google Scholar 

  60. Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme JF Jr, Schoenfeld DA, et al. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med. 2009;37:2720–6.

    PubMed  PubMed Central  Google Scholar 

  61. Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 1969;40:165–72.

    CAS  PubMed  Google Scholar 

  62. Goldman RH, Klughaupt M, Metcalf T, et al. Measurement of central venous oxygen saturation in patients with myocardial infarction. Circulation. 1968;38:941–6.

    CAS  PubMed  Google Scholar 

  63. Ander DS, Jaggi M, Rivers E, Rady MY, Levine TB, Levine AB, et al. Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department. Am J Cardiol. 1998;82:888–91.

    CAS  PubMed  Google Scholar 

  64. Dueck M, Klimek M, Appenrodt S, Weigand C, Boerner U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103:249–57.

    PubMed  Google Scholar 

  65. Reinhart K, Rudolph T, Bredle DL, Hannemann L. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95:1216–21.

    CAS  PubMed  Google Scholar 

  66. Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–8.

    PubMed  Google Scholar 

  67. Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.

    CAS  PubMed  Google Scholar 

  68. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–7.

    PubMed  Google Scholar 

  69. Ospina-Tascon GA, Umana M, Bermudez W, Bautista-Rincon DF, Hernandez G, Bruhn A, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015;41:796–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lim HS, Howell N. Cardiogenic shock due to end-stage heart faiure and acute myocardial infarction: characteristics and outcome of temporary mechanical circulatory support. Shock. 2018;50:167–72.

    CAS  PubMed  Google Scholar 

  71. Jansen TC, van Bommel J, Schoonderbeek FJ, et al. LACTATE Study Group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    PubMed  Google Scholar 

  72. Hernandez G, Ospina-Tascon GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock. The ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321:654–64.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoong Sern Lim.

Ethics declarations

Conflict of Interest

Hoong Sern Lim declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H.S. Haemodynamic Assessment in Cardiogenic Shock. Curr Emerg Hosp Med Rep 7, 214–226 (2019). https://doi.org/10.1007/s40138-019-00195-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40138-019-00195-0

Keywords

Navigation