The Role of Tumor Necrosis Factor Alpha (TNFα) in Hearing Loss and Vestibular Schwannomas
Abstract
Purpose of Review
The aim of this review is to highlight relevant literature on the role of tumor necrosis factor alpha (TNFα) in sensorineural hearing loss (SNHL) and vestibular schwannomas (VS).
Recent Findings
A comprehensive review of publically available databases including PubMed was performed. The mechanism by which hearing loss occurs in VS is still unknown and likely multifactorial. Genetic differences between VSs and tumor-secreted proteins may be responsible, at least in part, for VS-associated SNHL. TNFα has pleotropic roles in promoting inflammation, maintaining cellular homeostasis, inducing apoptosis, and mediating ototoxicity in patients with sporadic VS. TNFα-targeted therapies have shown efficacy in both animal models of sensorineural hearing loss and clinical trials in patients with immune-mediated hearing loss. Efforts are underway to develop nanotechnology-based methods to target TNFα and other pathogenic molecules in VS.
Summary
Development of molecularly targeted therapies against TNFα represents an important area of research in ameliorating VS-associated hearing loss.
Keywords
TNF alpha TNFα vestibular schwannoma Nanotechnology Inflammation Hearing lossNotes
Compliance with Ethical Standards
Conflict of Interest
The authors declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References
Papers of particular interest, published recently, have been highlighted as: • Of importance
- 1.Mahaley MS, Mettlin C, Natarajan N, Laws ER, Peace BB. Analysis of patterns of care of brain tumor patients in the United States: a study of the brain tumor section of the AANS and the CNS and the Commission on Cancer of the ACS. Clin Neurosurg. 1990;36:347–52.PubMedGoogle Scholar
- 2.Thakur JD, Banerjee AD, Khan IS, Sonig A, Shorter CD, Gardner GL, et al. An update on unilateral sporadic small vestibular schwannoma. Neurosurg Focus. 2012;33(3):E1. https://doi.org/10.3171/2012.6.FOCUS12144.CrossRefPubMedGoogle Scholar
- 3.Jacob A, Oblinger J, Bush ML, et al. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope. 2012;122:174–89.CrossRefPubMedGoogle Scholar
- 4.Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D, et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neuro-Oncol. 2015;122(2):313–20. https://doi.org/10.1007/s11060-014-1710-0.CrossRefGoogle Scholar
- 5.Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA, Shepard HM. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science. 1985;230(4728):943–5. https://doi.org/10.1126/science.3933111.CrossRefPubMedGoogle Scholar
- 6.Braumüller H, Wieder T, Brenner E, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494:361–5.CrossRefPubMedGoogle Scholar
- 7.Zhao X, Rong L, Zhao X, Rong L, Zhao X, Li X, et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest. 2012;122(11):4094–104. https://doi.org/10.1172/JCI64115.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. https://doi.org/10.1038/nrc3611.CrossRefPubMedGoogle Scholar
- 9.Roosli C, Linthicum FH, Cureoglu S, Merchant SN. Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol. 2012;33(3):473–80. https://doi.org/10.1097/MAO.0b013e318248ee02.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Matthies C, Samii M. Management of 1000 vestibular schwannomas (acoustic neuromas): clinical presentation. Neurosurgery. 1997;40(1):10.Google Scholar
- 11.(1996) The early history of the neurofibromatoses: evolution of the concept of neurofibromatosis type 2. Arch Otolaryngol Head Neck Surg 122:1240–1249.Google Scholar
- 12.Nadol JB, Diamond PF, Thornton AR. Correlation of hearing loss and radiologic dimensions of vestibular schwannomas (acoustic neuromas). Am J Otol. 1996;17(2):312–6.PubMedGoogle Scholar
- 13.Caye-Thomasen P, Dethloff T, Hansen S, Stangerup S-E, Thomsen J. Hearing in patients with intracanalicular vestibular schwannomas. Audiol Neurotol. 2007;12, 12(1)Google Scholar
- 14.Gouveris HT, Victor A, Mann WJ. Cochlear origin of early hearing loss in vestibular schwannoma. Laryngoscope. 2007;117:680–3.CrossRefPubMedGoogle Scholar
- 15.Stankovic KM, Mrugala MM, Martuza RL, Silver M, Betensky RA, Nadol JB, et al. Genetic determinants of hearing loss associated with vestibular schwannomas. Otol Neurotol. 2009;30(5):661–7. https://doi.org/10.1097/MAO.0b013e3181a66ece.CrossRefPubMedGoogle Scholar
- 16.Lassaletta L, Martínez-Glez V, Torres-Martín M, Rey JA, Gavilán J. cDNA microarray expression profile in vestibular schwannoma: correlation with clinical and radiological features. Cancer Genet Cytogenet. 2009;194(2):125–7. https://doi.org/10.1016/j.cancergencyto.2009.06.016.CrossRefPubMedGoogle Scholar
- 17.Silverstein H. A rapid protein test for acoustic neurinoma. Arch Otolaryngol. 1972;95(3):202–4. https://doi.org/10.1001/archotol.1972.00770080344003.CrossRefPubMedGoogle Scholar
- 18.Silverstein H. Labyrinthine tap as a diagnostic test for acoustic neurinoma. Otolaryngol Clin N Am. 1973;6(1):229–44.Google Scholar
- 19.Schmitt HA, Pich A, Schröder A, Scheper V, Lilli G, Reuter G, et al. Proteome analysis of human perilymph using an intraoperative sampling method. J Proteome Res. 2017;16(5):1911–23. https://doi.org/10.1021/acs.jproteome.6b00986.CrossRefPubMedGoogle Scholar
- 20.Lysaght AC, Kao S-Y, Paulo JA, Merchant SN, Steen H, Stankovic KM. Proteome of human perilymph. J Proteome Res. 2011;10(9):3845–51. https://doi.org/10.1021/pr200346q.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Ji H, Cao R, Yang Y, et al. TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun. 2014;5:4944.CrossRefPubMedGoogle Scholar
- 22.Brieger J, Bedavanija A, Lehr H-A, Maurer J, Mann WJ. Expression of angiogenic growth factors in acoustic neurinoma. Acta Otolaryngol. 2016;123:1040–5.CrossRefGoogle Scholar
- 23.• Plotkin SR, Stemmer-Rachamimov AO, Barker FG, Halpin C, Padera TP, Tyrrell A, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med. 2009;361:358–67. First demonstration that VEGF blockade can improve hearing in patients with NF2 vestibular schwannomas. CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Plotkin SR, Merker VL, Halpin C, Jennings D, McKenna MJ, Harris GJ, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33(6):1046–52. https://doi.org/10.1097/MAO.0b013e31825e73f5.CrossRefPubMedGoogle Scholar
- 25.Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72(9):3666–70. https://doi.org/10.1073/pnas.72.9.3666.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312(5996):724–9. https://doi.org/10.1038/312724a0.CrossRefPubMedGoogle Scholar
- 27.Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ, Jarrett JA, et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature. 1984;312(5996):721–4. https://doi.org/10.1038/312721a0.CrossRefPubMedGoogle Scholar
- 28.Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, et al. Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem. 1985;260(4):2345–54.PubMedGoogle Scholar
- 29.Probert L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience. 2015;302:2–22. https://doi.org/10.1016/j.neuroscience.2015.06.038.CrossRefPubMedGoogle Scholar
- 30.Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, et al. Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med. 2015;21(9):1076–84. https://doi.org/10.1038/nm.3925.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Zhao S, Yin KW, Goodson NJ. FRI0134 association between vitamin D deficiency and markers of disease activity in axial spondyloarthritis: table 1. Ann Rheum Dis. 2014;73(Suppl 2):430.2–430. https://doi.org/10.1136/annrheumdis-2014-eular.2134.CrossRefGoogle Scholar
- 32.Zou J, Pyykko I, Sutinen P, Toppila E. Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF. Hear Res. 2005;202(1-2):13–20. https://doi.org/10.1016/j.heares.2004.10.008.CrossRefPubMedGoogle Scholar
- 33.Riva C, Donadieu E, Magnan J, Lavieille J-P. Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol. 2007;42(4):327–36. https://doi.org/10.1016/j.exger.2006.10.014.CrossRefPubMedGoogle Scholar
- 34.Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM. Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope. 2002;112(9):1627–34. https://doi.org/10.1097/00005537-200209000-00019.CrossRefPubMedGoogle Scholar
- 35.Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83(4):575–83. https://doi.org/10.1002/jnr.20764.CrossRefPubMedGoogle Scholar
- 36.MacArthur CJ, Pillers DA, Pang J, Kempton JB, Trune DR. Altered expression of middle and inner ear cytokines in mouse otitis media. Laryngoscope. 2011;121(2):365–71. https://doi.org/10.1002/lary.21349.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Trune DR, Larrain BE, Hausman FA, Kempton JB, MacArthur CJ. Simultaneous measurement of multiple ear proteins with multiplex ELISA assays. Hear Res. 2011;275(1-2):1–7. https://doi.org/10.1016/j.heares.2010.11.009.CrossRefPubMedGoogle Scholar
- 38.Perny M, Roccio M, Grandgirard D, Solyga M, Senn P, Leib SL. The severity of infection determines the localization of damage and extent of sensorineural hearing loss in experimental pneumococcal meningitis. J Neurosci. 2016;36(29):7740–9. https://doi.org/10.1523/JNEUROSCI.0554-16.2016.CrossRefPubMedGoogle Scholar
- 39.So H, Kim H, Lee JH, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol. 2007;8(3):338–55. https://doi.org/10.1007/s10162-007-0084-9.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Kim HJ, Oh GS, Lee JH, Lyu AR, Ji HM, Lee SH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res. 2011;21(6):944–56. https://doi.org/10.1038/cr.2011.27.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011;2(7):e180. https://doi.org/10.1038/cddis.2011.63.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Hoang KN, Dinh CT, Bas E, Chen S, Eshraghi AA, Van De Water TR. Dexamethasone treatment of naive organ of Corti explants alters the expression pattern of apoptosis-related genes. Brain Res. 2009;1301:1–8.CrossRefPubMedGoogle Scholar
- 43.Bas E, Van De Water TR, Gupta C, Dinh J, Vu L, Martinez-Soriano F, et al. Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses. Br J Pharmacol. 2012;166(6):1888–904. https://doi.org/10.1111/j.1476-5381.2012.01890.x.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Pasparakis M. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med. 1996;184(4):1397–411. https://doi.org/10.1084/jem.184.4.1397.CrossRefPubMedGoogle Scholar
- 45.Erickson SL, de Sauvage FJ, Kikly K, Carver-Moore K, Pitts-Meek S, Gillett N, et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature. 1994;372(6506):560–3. https://doi.org/10.1038/372560a0.CrossRefPubMedGoogle Scholar
- 46.Pfeffer K, Matsuyama T, Kündig TM, Wakeham A, Kishihara K, Shahinian A, et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993;73(3):457–67. https://doi.org/10.1016/0092-8674(93)90134-C.CrossRefPubMedGoogle Scholar
- 47.Rothe J, Lesslauer W, Lötscher H, Lang Y, Koebel P, Köntgen F, et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to IMF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993;364(6440):798–802. https://doi.org/10.1038/364798a0.CrossRefPubMedGoogle Scholar
- 48.Yang S, Zhang LS, Gibboni R, Weiner B, Bao S. Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-deficient mice. Cereb Cortex. 2014;24(7):1956–65. https://doi.org/10.1093/cercor/bht053.CrossRefPubMedGoogle Scholar
- 49.Oishi N, Chen J, Zheng H-W, Hill K, Schacht J, Sha S-H. Tumor necrosis factor-alpha-mutant mice exhibit high frequency hearing loss. J Assoc Res Otolaryngol. 2013;14(6):801–11. https://doi.org/10.1007/s10162-013-0410-3.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Sharaf K, Ihler F, Bertlich M, Reichel CA, Berghaus A, Canis M. Tumor necrosis factor-induced decrease of Cochlear blood flow can be reversed by etanercept or JTE-013. Otol Neurotol. 2016;37:e203–8.CrossRefPubMedGoogle Scholar
- 51.Ihler F, Sharaf K, Bertlich M, Strieth S, Reichel CA, Berghaus A, et al. Etanercept prevents decrease of cochlear blood flow dose-dependently caused by tumor necrosis factor alpha. Ann Otol Rhinol Laryngol. 2013;122(7):468–73. https://doi.org/10.1177/000348941312200711.CrossRefPubMedGoogle Scholar
- 52.Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S. TNF-alpha inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol. 2013;52:545–52.CrossRefPubMedGoogle Scholar
- 53.Ihler F, Pelz S, Coors M, Matthias C, Canis M. Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in guinea pigs: preliminary audiologic results. Int J Audiol. 2014;53:810–6.CrossRefPubMedGoogle Scholar
- 54.Lobo D, García-Berrocal JR, Trinidad A, Verdaguer JM, Ramírez-Camacho R. Review of the biological agents used for immune-mediated inner ear disease. Acta Otorrinolaringologica (English Edition). 2013;64(3):223–9. https://doi.org/10.1016/j.otoeng.2013.06.005.CrossRefGoogle Scholar
- 55.Matteson EL, Tirzaman O, Kasperbauer J, Facer GW, Beatty CW, Fabry DA, et al. Use of methotrexate for autoimmune hearing loss. Ann Otol Rhinol Laryngol. 2016;109:710–4.CrossRefGoogle Scholar
- 56.McCabe BF. Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol. 1979;88(5):585–9. https://doi.org/10.1177/000348947908800501.CrossRefPubMedGoogle Scholar
- 57.Demirhan E, Eskut NP, Zorlu Y, Cukurova I, Tuna G, Kirkali FG. Blood levels of TNF-α, IL-10, and IL-12 in idiopathic sudden sensorineural hearing loss. Laryngoscope. 2013;123(7):1778–81. https://doi.org/10.1002/lary.23907.CrossRefPubMedGoogle Scholar
- 58.Scherer EQ, Yang J, Canis M, et al. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke. 2010;41:2618–24.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Haubner F, Martin L, Steffens T, Strutz J, Kleinjung T. The role of soluble adhesion molecules and cytokines in sudden sensorineural hearing loss. YMHN. 2011;144:575–80.Google Scholar
- 60.Derebery MJ, Rao VS, Siglock TJ, Linthicum FH, Nelson RA. Menière’s disease: an immune complex-mediated illness? Laryngoscope. 1991;101(3):225–9. https://doi.org/10.1288/00005537-199103000-00001.CrossRefPubMedGoogle Scholar
- 61.Nacci A, Dallan I, Monzani F, Dardano A, Migliorini P, Riente L, et al. Elevated antithyroid peroxidase and antinuclear autoantibody titers in Ménière’s disease patients: more than a chance association? Audiol Neurootol. 2010;15(1):1–6. https://doi.org/10.1159/000218357.CrossRefPubMedGoogle Scholar
- 62.Gazquez I, Soto-Varela A, Aran I, Santos S, Batuecas A, Trinidad G, et al. High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. PLoS One. 2011;6(10):e26759. https://doi.org/10.1371/journal.pone.0026759.CrossRefPubMedPubMedCentralGoogle Scholar
- 63.• Dilwali S, Landegger LD, Soares VY, Deschler DG, Stankovic KM. Secreted factors from human vestibular schwannomas can cause Cochlear damage. Sci Rep. 2015;5:18599. First demonstration that VS secretions rich in TNFα can cause direct cochlear damage. CrossRefPubMedPubMedCentralGoogle Scholar
- 64.van Wijk F, Staecker H, Keithley E, Lefebvre PP. Local perfusion of the tumor necrosis factor α blocker infliximab to the inner ear improves autoimmune neurosensory hearing loss. Audiol Neurotol. 2006;11(6):357–65. https://doi.org/10.1159/000095897.CrossRefGoogle Scholar
- 65.Derebery MJ, Fisher LM, Voelker CCJ, Calzada A. An open label study to evaluate the safety and efficacy of intratympanic golimumab therapy in patients with autoimmune inner ear disease. Otol Neurotol. 2014;35(9):1515–21. https://doi.org/10.1097/MAO.0000000000000566.CrossRefPubMedGoogle Scholar
- 66.Gazeau P, Saraux A, Devauchelle-Pensec V, Cornec D. Long-term efficacy of infliximab in autoimmune sensorineural hearing loss associated with rheumatoid arthritis. Rheumatology. 2014;53(9):1715–6. https://doi.org/10.1093/rheumatology/keu025.CrossRefPubMedGoogle Scholar
- 67.Rahman MU, Poe DS, Choi HK. Etanercept therapy for immune-mediated cochleovestibular disorders: preliminary results in a pilot study. Otol Neurotol. 2001;22(5):619–24. https://doi.org/10.1097/00129492-200109000-00010.CrossRefPubMedGoogle Scholar
- 68.Matteson EL, Choi HK, Poe DS, Wise C, Lowe VJ, Mcdonald TJ, et al. Etanercept therapy for immune-mediated cochleovestibular disorders: a multi-center, open-label, pilot study. Arthritis Rheum. 2005;53(3):337–42. https://doi.org/10.1002/art.21179.CrossRefPubMedGoogle Scholar
- 69.• Cohen S, Shoup A, Weisman MH, Harris J. Etanercept treatment for autoimmune inner ear disease: results of a pilot placebo-controlled study. Otol Neurotol. 2005;26(5):903–7 Randomized controlled trial of etanercept treatment in patients with AIED. https://doi.org/10.1097/01.mao.0000185082.28598.87.CrossRefPubMedGoogle Scholar
- 70.Taurone S, Bianchi E, Attanasio G, et al. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue. Mol Med Rep. 2015;12:737–45.CrossRefPubMedGoogle Scholar
- 71.• Ren Y, Sagers JE, Landegger LD, Bhatia SN, Stankovic KM. Tumor-penetrating delivery of siRNA against TNFα to human vestibular schwannomas. Sci Rep. 2017;7:12922. First demonstration that tumor-targeted nanotechnology and RNA interference can be leveraged synergistically to mitigate the secretion of ototoxic molecules including TNFα. CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Agnihotri S, Jalali S, Wilson MR, et al. The genomic landscape of schwannoma. Nat Genet. 2016;48:1339–48.CrossRefPubMedGoogle Scholar
- 73.Jobin C, Morteau O, Han DS, Balfour Sartor R. Specific NF-kappaB blockade selectively inhibits tumour necrosis factor-alpha-induced COX-2 but not constitutive COX-1 gene expression in HT-29 cells. Immunology. 1998;95(4):537–43. https://doi.org/10.1046/j.1365-2567.1998.00646.x.CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB. Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Investig. 1995;95:1669–75.CrossRefPubMedPubMedCentralGoogle Scholar
- 75.Dilwali S, Briët MC, Kao S-Y, Fujita T, Landegger LD, Platt MP, et al. Preclinical validation of anti-nuclear factor-kappa B therapy to inhibit human vestibular schwannoma growth. Mol Oncol. 2015;9(7):1359–70. https://doi.org/10.1016/j.molonc.2015.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Dilwali S, Kao S-Y, Fujita T, Landegger LD, Stankovic KM. Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res. 2015;166(1):1–11. https://doi.org/10.1016/j.trsl.2014.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Kandathil CK, Dilwali S, Wu C-C, Ibrahimov M, McKenna MJ, Lee H, et al. Aspirin intake correlates with halted growth of sporadic vestibular schwannoma in vivo. Otol Neurotol. 2014;35(2):353–7. https://doi.org/10.1097/MAO.0000000000000189.CrossRefPubMedGoogle Scholar
- 78.Stankovic KM (2017) Study of aspirin in patients with vestibular schwannoma. In: https://clinicaltrials.gov/ct2/show/NCT03079999?term=stankovic&rank=1. ClinigalTrials.gov Identifier: NCT03079999. Accessed 30 Nov 2017.
- 79.Hellgren K, Smedby KE, Feltelius N, Baecklund E, Askling J. Do rheumatoid arthritis and lymphoma share risk factors?: a comparison of lymphoma and cancer risks before and after diagnosis of rheumatoid arthritis. Arthritis Rheum. 2010;62(5):1252–8. https://doi.org/10.1002/art.27402.CrossRefPubMedGoogle Scholar
- 80.Hellgren K, Smedby KE, Backlin C, Sundstrom C, Feltelius N, Eriksson JK, et al. Ankylosing spondylitis, psoriatic arthritis, and risk of malignant lymphoma: a cohort study based on nationwide prospectively recorded data from Sweden. Arthritis Rheumatol. 2014;66(5):1282–90. https://doi.org/10.1002/art.38339.CrossRefPubMedGoogle Scholar
- 81.Baecklund E, Iliadou A, Askling J, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54:692–701.CrossRefPubMedGoogle Scholar
- 82.Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda APM. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72(4):517–24. https://doi.org/10.1136/annrheumdis-2011-201244.CrossRefPubMedGoogle Scholar
- 83.Wolfe F, Michaud K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum. 2007;56(5):1433–9. https://doi.org/10.1002/art.22579.CrossRefPubMedGoogle Scholar
- 84.Ramiro S, Sepriano A, Chatzidionysiou K, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2017;76:1101–36.CrossRefPubMedGoogle Scholar